Solve for x
x=1
x=0
Graph
Share
Copied to clipboard
2\times 3=2x+6+\left(x-3\right)x
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by 2\left(x-3\right)\left(x+3\right), the least common multiple of x^{2}-9,x-3,2x+6.
6=2x+6+\left(x-3\right)x
Multiply 2 and 3 to get 6.
6=2x+6+x^{2}-3x
Use the distributive property to multiply x-3 by x.
6=-x+6+x^{2}
Combine 2x and -3x to get -x.
-x+6+x^{2}=6
Swap sides so that all variable terms are on the left hand side.
-x+6+x^{2}-6=0
Subtract 6 from both sides.
-x+x^{2}=0
Subtract 6 from 6 to get 0.
x\left(-1+x\right)=0
Factor out x.
x=0 x=1
To find equation solutions, solve x=0 and -1+x=0.
2\times 3=2x+6+\left(x-3\right)x
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by 2\left(x-3\right)\left(x+3\right), the least common multiple of x^{2}-9,x-3,2x+6.
6=2x+6+\left(x-3\right)x
Multiply 2 and 3 to get 6.
6=2x+6+x^{2}-3x
Use the distributive property to multiply x-3 by x.
6=-x+6+x^{2}
Combine 2x and -3x to get -x.
-x+6+x^{2}=6
Swap sides so that all variable terms are on the left hand side.
-x+6+x^{2}-6=0
Subtract 6 from both sides.
-x+x^{2}=0
Subtract 6 from 6 to get 0.
x^{2}-x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±1}{2}
Take the square root of 1.
x=\frac{1±1}{2}
The opposite of -1 is 1.
x=\frac{2}{2}
Now solve the equation x=\frac{1±1}{2} when ± is plus. Add 1 to 1.
x=1
Divide 2 by 2.
x=\frac{0}{2}
Now solve the equation x=\frac{1±1}{2} when ± is minus. Subtract 1 from 1.
x=0
Divide 0 by 2.
x=1 x=0
The equation is now solved.
2\times 3=2x+6+\left(x-3\right)x
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by 2\left(x-3\right)\left(x+3\right), the least common multiple of x^{2}-9,x-3,2x+6.
6=2x+6+\left(x-3\right)x
Multiply 2 and 3 to get 6.
6=2x+6+x^{2}-3x
Use the distributive property to multiply x-3 by x.
6=-x+6+x^{2}
Combine 2x and -3x to get -x.
-x+6+x^{2}=6
Swap sides so that all variable terms are on the left hand side.
-x+6+x^{2}-6=0
Subtract 6 from both sides.
-x+x^{2}=0
Subtract 6 from 6 to get 0.
x^{2}-x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{1}{2}\right)^{2}=\frac{1}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{1}{2} x-\frac{1}{2}=-\frac{1}{2}
Simplify.
x=1 x=0
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}