Solve for n
n = \frac{\sqrt{105} - 1}{4} \approx 2.311737691
n=\frac{-\sqrt{105}-1}{4}\approx -2.811737691
Share
Copied to clipboard
3\times 3=n-4+n^{2}\times 2
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3n^{2}, the least common multiple of n^{2},3n^{2}.
9=n-4+n^{2}\times 2
Multiply 3 and 3 to get 9.
n-4+n^{2}\times 2=9
Swap sides so that all variable terms are on the left hand side.
n-4+n^{2}\times 2-9=0
Subtract 9 from both sides.
n-13+n^{2}\times 2=0
Subtract 9 from -4 to get -13.
2n^{2}+n-13=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-1±\sqrt{1^{2}-4\times 2\left(-13\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 1 for b, and -13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-1±\sqrt{1-4\times 2\left(-13\right)}}{2\times 2}
Square 1.
n=\frac{-1±\sqrt{1-8\left(-13\right)}}{2\times 2}
Multiply -4 times 2.
n=\frac{-1±\sqrt{1+104}}{2\times 2}
Multiply -8 times -13.
n=\frac{-1±\sqrt{105}}{2\times 2}
Add 1 to 104.
n=\frac{-1±\sqrt{105}}{4}
Multiply 2 times 2.
n=\frac{\sqrt{105}-1}{4}
Now solve the equation n=\frac{-1±\sqrt{105}}{4} when ± is plus. Add -1 to \sqrt{105}.
n=\frac{-\sqrt{105}-1}{4}
Now solve the equation n=\frac{-1±\sqrt{105}}{4} when ± is minus. Subtract \sqrt{105} from -1.
n=\frac{\sqrt{105}-1}{4} n=\frac{-\sqrt{105}-1}{4}
The equation is now solved.
3\times 3=n-4+n^{2}\times 2
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3n^{2}, the least common multiple of n^{2},3n^{2}.
9=n-4+n^{2}\times 2
Multiply 3 and 3 to get 9.
n-4+n^{2}\times 2=9
Swap sides so that all variable terms are on the left hand side.
n+n^{2}\times 2=9+4
Add 4 to both sides.
n+n^{2}\times 2=13
Add 9 and 4 to get 13.
2n^{2}+n=13
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2n^{2}+n}{2}=\frac{13}{2}
Divide both sides by 2.
n^{2}+\frac{1}{2}n=\frac{13}{2}
Dividing by 2 undoes the multiplication by 2.
n^{2}+\frac{1}{2}n+\left(\frac{1}{4}\right)^{2}=\frac{13}{2}+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+\frac{1}{2}n+\frac{1}{16}=\frac{13}{2}+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
n^{2}+\frac{1}{2}n+\frac{1}{16}=\frac{105}{16}
Add \frac{13}{2} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n+\frac{1}{4}\right)^{2}=\frac{105}{16}
Factor n^{2}+\frac{1}{2}n+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{1}{4}\right)^{2}}=\sqrt{\frac{105}{16}}
Take the square root of both sides of the equation.
n+\frac{1}{4}=\frac{\sqrt{105}}{4} n+\frac{1}{4}=-\frac{\sqrt{105}}{4}
Simplify.
n=\frac{\sqrt{105}-1}{4} n=\frac{-\sqrt{105}-1}{4}
Subtract \frac{1}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}