\frac{ 3 }{ { n }^{ 2 } } = \frac{ n-4 }{ 3 { n }^{ 2 } } + \frac{ 2 }{ 3 { n }^{ } }
Solve for n
n = \frac{13}{3} = 4\frac{1}{3} \approx 4.333333333
Share
Copied to clipboard
3\times 3=n-4+n\times 2
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3n^{2}, the least common multiple of n^{2},3n^{2},3n^{1}.
9=n-4+n\times 2
Multiply 3 and 3 to get 9.
9=3n-4
Combine n and n\times 2 to get 3n.
3n-4=9
Swap sides so that all variable terms are on the left hand side.
3n=9+4
Add 4 to both sides.
3n=13
Add 9 and 4 to get 13.
n=\frac{13}{3}
Divide both sides by 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}