Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\sqrt{5}}{\left(\sqrt{5}\right)^{2}}-\frac{2+\sqrt{5}}{3\sqrt{5}-5}
Rationalize the denominator of \frac{3}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{3\sqrt{5}}{5}-\frac{2+\sqrt{5}}{3\sqrt{5}-5}
The square of \sqrt{5} is 5.
\frac{3\sqrt{5}}{5}-\frac{\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{\left(3\sqrt{5}-5\right)\left(3\sqrt{5}+5\right)}
Rationalize the denominator of \frac{2+\sqrt{5}}{3\sqrt{5}-5} by multiplying numerator and denominator by 3\sqrt{5}+5.
\frac{3\sqrt{5}}{5}-\frac{\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{\left(3\sqrt{5}\right)^{2}-5^{2}}
Consider \left(3\sqrt{5}-5\right)\left(3\sqrt{5}+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\sqrt{5}}{5}-\frac{\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{3^{2}\left(\sqrt{5}\right)^{2}-5^{2}}
Expand \left(3\sqrt{5}\right)^{2}.
\frac{3\sqrt{5}}{5}-\frac{\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{9\left(\sqrt{5}\right)^{2}-5^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{3\sqrt{5}}{5}-\frac{\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{9\times 5-5^{2}}
The square of \sqrt{5} is 5.
\frac{3\sqrt{5}}{5}-\frac{\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{45-5^{2}}
Multiply 9 and 5 to get 45.
\frac{3\sqrt{5}}{5}-\frac{\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{45-25}
Calculate 5 to the power of 2 and get 25.
\frac{3\sqrt{5}}{5}-\frac{\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{20}
Subtract 25 from 45 to get 20.
\frac{4\times 3\sqrt{5}}{20}-\frac{\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{20}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 20 is 20. Multiply \frac{3\sqrt{5}}{5} times \frac{4}{4}.
\frac{4\times 3\sqrt{5}-\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{20}
Since \frac{4\times 3\sqrt{5}}{20} and \frac{\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{12\sqrt{5}-6\sqrt{5}-10-15-5\sqrt{5}}{20}
Do the multiplications in 4\times 3\sqrt{5}-\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right).
\frac{\sqrt{5}-25}{20}
Do the calculations in 12\sqrt{5}-6\sqrt{5}-10-15-5\sqrt{5}.