\frac{ 3 }{ \frac{ 7 }{ \frac{ 4 }{ \frac{ 8 }{ { \left( \frac{ 2 }{ { 6 }^{ } } \right) }^{ 2 } } } } }
Evaluate
\frac{1}{42}\approx 0.023809524
Factor
\frac{1}{2 \cdot 3 \cdot 7} = 0.023809523809523808
Share
Copied to clipboard
\frac{3\times \frac{4}{\frac{8}{\left(\frac{2}{6^{1}}\right)^{2}}}}{7}
Divide 3 by \frac{7}{\frac{4}{\frac{8}{\left(\frac{2}{6^{1}}\right)^{2}}}} by multiplying 3 by the reciprocal of \frac{7}{\frac{4}{\frac{8}{\left(\frac{2}{6^{1}}\right)^{2}}}}.
\frac{3\times \frac{4\times \left(\frac{2}{6^{1}}\right)^{2}}{8}}{7}
Divide 4 by \frac{8}{\left(\frac{2}{6^{1}}\right)^{2}} by multiplying 4 by the reciprocal of \frac{8}{\left(\frac{2}{6^{1}}\right)^{2}}.
\frac{3\times \frac{4\times \left(\frac{2}{6}\right)^{2}}{8}}{7}
Calculate 6 to the power of 1 and get 6.
\frac{3\times \frac{4\times \left(\frac{1}{3}\right)^{2}}{8}}{7}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\frac{3\times \frac{4\times \frac{1}{9}}{8}}{7}
Calculate \frac{1}{3} to the power of 2 and get \frac{1}{9}.
\frac{3\times \frac{\frac{4}{9}}{8}}{7}
Multiply 4 and \frac{1}{9} to get \frac{4}{9}.
\frac{3\times \frac{4}{9\times 8}}{7}
Express \frac{\frac{4}{9}}{8} as a single fraction.
\frac{3\times \frac{4}{72}}{7}
Multiply 9 and 8 to get 72.
\frac{3\times \frac{1}{18}}{7}
Reduce the fraction \frac{4}{72} to lowest terms by extracting and canceling out 4.
\frac{\frac{1}{6}}{7}
Multiply 3 and \frac{1}{18} to get \frac{1}{6}.
\frac{1}{6\times 7}
Express \frac{\frac{1}{6}}{7} as a single fraction.
\frac{1}{42}
Multiply 6 and 7 to get 42.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}