Solve for x
x=-\frac{2y+5}{7-y}
y\neq 7
Solve for y
y=-\frac{7x+5}{2-x}
x\neq 2
Graph
Share
Copied to clipboard
2y+5=x\left(y-7\right)
Multiply both sides of the equation by y-7.
2y+5=xy-7x
Use the distributive property to multiply x by y-7.
xy-7x=2y+5
Swap sides so that all variable terms are on the left hand side.
\left(y-7\right)x=2y+5
Combine all terms containing x.
\frac{\left(y-7\right)x}{y-7}=\frac{2y+5}{y-7}
Divide both sides by y-7.
x=\frac{2y+5}{y-7}
Dividing by y-7 undoes the multiplication by y-7.
2y+5=x\left(y-7\right)
Variable y cannot be equal to 7 since division by zero is not defined. Multiply both sides of the equation by y-7.
2y+5=xy-7x
Use the distributive property to multiply x by y-7.
2y+5-xy=-7x
Subtract xy from both sides.
2y-xy=-7x-5
Subtract 5 from both sides.
\left(2-x\right)y=-7x-5
Combine all terms containing y.
\frac{\left(2-x\right)y}{2-x}=\frac{-7x-5}{2-x}
Divide both sides by 2-x.
y=\frac{-7x-5}{2-x}
Dividing by 2-x undoes the multiplication by 2-x.
y=-\frac{7x+5}{2-x}
Divide -7x-5 by 2-x.
y=-\frac{7x+5}{2-x}\text{, }y\neq 7
Variable y cannot be equal to 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}