Solve for x
x=-1
Graph
Share
Copied to clipboard
\left(x+3\right)\left(2x-9\right)-\left(5x-1\right)=\left(x-3\right)\left(2x+6\right)
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+3\right), the least common multiple of x-3,x^{2}-9,x+3.
2x^{2}-3x-27-\left(5x-1\right)=\left(x-3\right)\left(2x+6\right)
Use the distributive property to multiply x+3 by 2x-9 and combine like terms.
2x^{2}-3x-27-5x+1=\left(x-3\right)\left(2x+6\right)
To find the opposite of 5x-1, find the opposite of each term.
2x^{2}-8x-27+1=\left(x-3\right)\left(2x+6\right)
Combine -3x and -5x to get -8x.
2x^{2}-8x-26=\left(x-3\right)\left(2x+6\right)
Add -27 and 1 to get -26.
2x^{2}-8x-26=2x^{2}-18
Use the distributive property to multiply x-3 by 2x+6 and combine like terms.
2x^{2}-8x-26-2x^{2}=-18
Subtract 2x^{2} from both sides.
-8x-26=-18
Combine 2x^{2} and -2x^{2} to get 0.
-8x=-18+26
Add 26 to both sides.
-8x=8
Add -18 and 26 to get 8.
x=\frac{8}{-8}
Divide both sides by -8.
x=-1
Divide 8 by -8 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}