Solve for x
x=\frac{7y+2}{2\left(1-2y\right)}
y\neq \frac{1}{2}
Solve for y
y=\frac{2\left(x-1\right)}{4x+7}
x\neq -\frac{7}{4}
Graph
Share
Copied to clipboard
2x-2=y\left(4x+7\right)
Variable x cannot be equal to -\frac{7}{4} since division by zero is not defined. Multiply both sides of the equation by 4x+7.
2x-2=4yx+7y
Use the distributive property to multiply y by 4x+7.
2x-2-4yx=7y
Subtract 4yx from both sides.
2x-4yx=7y+2
Add 2 to both sides.
\left(2-4y\right)x=7y+2
Combine all terms containing x.
\frac{\left(2-4y\right)x}{2-4y}=\frac{7y+2}{2-4y}
Divide both sides by -4y+2.
x=\frac{7y+2}{2-4y}
Dividing by -4y+2 undoes the multiplication by -4y+2.
x=\frac{7y+2}{2\left(1-2y\right)}
Divide 7y+2 by -4y+2.
x=\frac{7y+2}{2\left(1-2y\right)}\text{, }x\neq -\frac{7}{4}
Variable x cannot be equal to -\frac{7}{4}.
2x-2=y\left(4x+7\right)
Multiply both sides of the equation by 4x+7.
2x-2=4yx+7y
Use the distributive property to multiply y by 4x+7.
4yx+7y=2x-2
Swap sides so that all variable terms are on the left hand side.
\left(4x+7\right)y=2x-2
Combine all terms containing y.
\frac{\left(4x+7\right)y}{4x+7}=\frac{2x-2}{4x+7}
Divide both sides by 4x+7.
y=\frac{2x-2}{4x+7}
Dividing by 4x+7 undoes the multiplication by 4x+7.
y=\frac{2\left(x-1\right)}{4x+7}
Divide -2+2x by 4x+7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}