Solve for x
x = \frac{7}{2} = 3\frac{1}{2} = 3.5
y\neq -3
Solve for y
y = -\frac{7}{2} = -3\frac{1}{2} = -3.5
x\neq \frac{1}{2}
Graph
Share
Copied to clipboard
2x-1=2\left(y+3\right)
Multiply both sides of the equation by y+3.
2x-1=2y+6
Use the distributive property to multiply 2 by y+3.
2x=2y+6+1
Add 1 to both sides.
2x=2y+7
Add 6 and 1 to get 7.
\frac{2x}{2}=\frac{2y+7}{2}
Divide both sides by 2.
x=\frac{2y+7}{2}
Dividing by 2 undoes the multiplication by 2.
x=y+\frac{7}{2}
Divide 2y+7 by 2.
2x-1=2\left(y+3\right)
Variable y cannot be equal to -3 since division by zero is not defined. Multiply both sides of the equation by y+3.
2x-1=2y+6
Use the distributive property to multiply 2 by y+3.
2y+6=2x-1
Swap sides so that all variable terms are on the left hand side.
2y=2x-1-6
Subtract 6 from both sides.
2y=2x-7
Subtract 6 from -1 to get -7.
\frac{2y}{2}=\frac{2x-7}{2}
Divide both sides by 2.
y=\frac{2x-7}{2}
Dividing by 2 undoes the multiplication by 2.
y=x-\frac{7}{2}
Divide 2x-7 by 2.
y=x-\frac{7}{2}\text{, }y\neq -3
Variable y cannot be equal to -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}