Solve for x
x=-\frac{y-1}{2-y}
y\neq 2
Solve for y
y=-\frac{2x-1}{1-x}
x\neq 1
Graph
Share
Copied to clipboard
2x-1=y\left(x-1\right)
Variable x cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by x-1.
2x-1=yx-y
Use the distributive property to multiply y by x-1.
2x-1-yx=-y
Subtract yx from both sides.
2x-yx=-y+1
Add 1 to both sides.
\left(2-y\right)x=-y+1
Combine all terms containing x.
\left(2-y\right)x=1-y
The equation is in standard form.
\frac{\left(2-y\right)x}{2-y}=\frac{1-y}{2-y}
Divide both sides by -y+2.
x=\frac{1-y}{2-y}
Dividing by -y+2 undoes the multiplication by -y+2.
x=\frac{1-y}{2-y}\text{, }x\neq 1
Variable x cannot be equal to 1.
2x-1=y\left(x-1\right)
Multiply both sides of the equation by x-1.
2x-1=yx-y
Use the distributive property to multiply y by x-1.
yx-y=2x-1
Swap sides so that all variable terms are on the left hand side.
\left(x-1\right)y=2x-1
Combine all terms containing y.
\frac{\left(x-1\right)y}{x-1}=\frac{2x-1}{x-1}
Divide both sides by x-1.
y=\frac{2x-1}{x-1}
Dividing by x-1 undoes the multiplication by x-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}