Solve for x
x=\frac{31}{44}\approx 0.704545455
Graph
Share
Copied to clipboard
\frac{5\left(2x-1\right)}{45}-\frac{9\left(x-4\right)}{45}=x
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 9 and 5 is 45. Multiply \frac{2x-1}{9} times \frac{5}{5}. Multiply \frac{x-4}{5} times \frac{9}{9}.
\frac{5\left(2x-1\right)-9\left(x-4\right)}{45}=x
Since \frac{5\left(2x-1\right)}{45} and \frac{9\left(x-4\right)}{45} have the same denominator, subtract them by subtracting their numerators.
\frac{10x-5-9x+36}{45}=x
Do the multiplications in 5\left(2x-1\right)-9\left(x-4\right).
\frac{x+31}{45}=x
Combine like terms in 10x-5-9x+36.
\frac{1}{45}x+\frac{31}{45}=x
Divide each term of x+31 by 45 to get \frac{1}{45}x+\frac{31}{45}.
\frac{1}{45}x+\frac{31}{45}-x=0
Subtract x from both sides.
-\frac{44}{45}x+\frac{31}{45}=0
Combine \frac{1}{45}x and -x to get -\frac{44}{45}x.
-\frac{44}{45}x=-\frac{31}{45}
Subtract \frac{31}{45} from both sides. Anything subtracted from zero gives its negation.
x=-\frac{31}{45}\left(-\frac{45}{44}\right)
Multiply both sides by -\frac{45}{44}, the reciprocal of -\frac{44}{45}.
x=\frac{-31\left(-45\right)}{45\times 44}
Multiply -\frac{31}{45} times -\frac{45}{44} by multiplying numerator times numerator and denominator times denominator.
x=\frac{1395}{1980}
Do the multiplications in the fraction \frac{-31\left(-45\right)}{45\times 44}.
x=\frac{31}{44}
Reduce the fraction \frac{1395}{1980} to lowest terms by extracting and canceling out 45.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}