Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2+x\right)\left(2x-1\right)+2\left(2+x\right)\left(2x+5\right)\times 2=\left(4x+6\right)\left(x+4\right)
Variable x cannot be equal to any of the values -\frac{5}{2},-2,-\frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by 2^{2}\left(\frac{1}{2}x+1\right)\left(2x+3\right)\left(2x+5\right), the least common multiple of 2\left(2x+3\right)\left(2x+5\right),2x+3,2x\left(x+2\right)+5\left(x+2\right).
3x-2+2x^{2}+2\left(2+x\right)\left(2x+5\right)\times 2=\left(4x+6\right)\left(x+4\right)
Use the distributive property to multiply 2+x by 2x-1 and combine like terms.
3x-2+2x^{2}+4\left(2+x\right)\left(2x+5\right)=\left(4x+6\right)\left(x+4\right)
Multiply 2 and 2 to get 4.
3x-2+2x^{2}+\left(8+4x\right)\left(2x+5\right)=\left(4x+6\right)\left(x+4\right)
Use the distributive property to multiply 4 by 2+x.
3x-2+2x^{2}+36x+40+8x^{2}=\left(4x+6\right)\left(x+4\right)
Use the distributive property to multiply 8+4x by 2x+5 and combine like terms.
39x-2+2x^{2}+40+8x^{2}=\left(4x+6\right)\left(x+4\right)
Combine 3x and 36x to get 39x.
39x+38+2x^{2}+8x^{2}=\left(4x+6\right)\left(x+4\right)
Add -2 and 40 to get 38.
39x+38+10x^{2}=\left(4x+6\right)\left(x+4\right)
Combine 2x^{2} and 8x^{2} to get 10x^{2}.
39x+38+10x^{2}=4x^{2}+22x+24
Use the distributive property to multiply 4x+6 by x+4 and combine like terms.
39x+38+10x^{2}-4x^{2}=22x+24
Subtract 4x^{2} from both sides.
39x+38+6x^{2}=22x+24
Combine 10x^{2} and -4x^{2} to get 6x^{2}.
39x+38+6x^{2}-22x=24
Subtract 22x from both sides.
17x+38+6x^{2}=24
Combine 39x and -22x to get 17x.
17x+38+6x^{2}-24=0
Subtract 24 from both sides.
17x+14+6x^{2}=0
Subtract 24 from 38 to get 14.
6x^{2}+17x+14=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-17±\sqrt{17^{2}-4\times 6\times 14}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 17 for b, and 14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-17±\sqrt{289-4\times 6\times 14}}{2\times 6}
Square 17.
x=\frac{-17±\sqrt{289-24\times 14}}{2\times 6}
Multiply -4 times 6.
x=\frac{-17±\sqrt{289-336}}{2\times 6}
Multiply -24 times 14.
x=\frac{-17±\sqrt{-47}}{2\times 6}
Add 289 to -336.
x=\frac{-17±\sqrt{47}i}{2\times 6}
Take the square root of -47.
x=\frac{-17±\sqrt{47}i}{12}
Multiply 2 times 6.
x=\frac{-17+\sqrt{47}i}{12}
Now solve the equation x=\frac{-17±\sqrt{47}i}{12} when ± is plus. Add -17 to i\sqrt{47}.
x=\frac{-\sqrt{47}i-17}{12}
Now solve the equation x=\frac{-17±\sqrt{47}i}{12} when ± is minus. Subtract i\sqrt{47} from -17.
x=\frac{-17+\sqrt{47}i}{12} x=\frac{-\sqrt{47}i-17}{12}
The equation is now solved.
\left(2+x\right)\left(2x-1\right)+2\left(2+x\right)\left(2x+5\right)\times 2=\left(4x+6\right)\left(x+4\right)
Variable x cannot be equal to any of the values -\frac{5}{2},-2,-\frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by 2^{2}\left(\frac{1}{2}x+1\right)\left(2x+3\right)\left(2x+5\right), the least common multiple of 2\left(2x+3\right)\left(2x+5\right),2x+3,2x\left(x+2\right)+5\left(x+2\right).
3x-2+2x^{2}+2\left(2+x\right)\left(2x+5\right)\times 2=\left(4x+6\right)\left(x+4\right)
Use the distributive property to multiply 2+x by 2x-1 and combine like terms.
3x-2+2x^{2}+4\left(2+x\right)\left(2x+5\right)=\left(4x+6\right)\left(x+4\right)
Multiply 2 and 2 to get 4.
3x-2+2x^{2}+\left(8+4x\right)\left(2x+5\right)=\left(4x+6\right)\left(x+4\right)
Use the distributive property to multiply 4 by 2+x.
3x-2+2x^{2}+36x+40+8x^{2}=\left(4x+6\right)\left(x+4\right)
Use the distributive property to multiply 8+4x by 2x+5 and combine like terms.
39x-2+2x^{2}+40+8x^{2}=\left(4x+6\right)\left(x+4\right)
Combine 3x and 36x to get 39x.
39x+38+2x^{2}+8x^{2}=\left(4x+6\right)\left(x+4\right)
Add -2 and 40 to get 38.
39x+38+10x^{2}=\left(4x+6\right)\left(x+4\right)
Combine 2x^{2} and 8x^{2} to get 10x^{2}.
39x+38+10x^{2}=4x^{2}+22x+24
Use the distributive property to multiply 4x+6 by x+4 and combine like terms.
39x+38+10x^{2}-4x^{2}=22x+24
Subtract 4x^{2} from both sides.
39x+38+6x^{2}=22x+24
Combine 10x^{2} and -4x^{2} to get 6x^{2}.
39x+38+6x^{2}-22x=24
Subtract 22x from both sides.
17x+38+6x^{2}=24
Combine 39x and -22x to get 17x.
17x+6x^{2}=24-38
Subtract 38 from both sides.
17x+6x^{2}=-14
Subtract 38 from 24 to get -14.
6x^{2}+17x=-14
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{6x^{2}+17x}{6}=-\frac{14}{6}
Divide both sides by 6.
x^{2}+\frac{17}{6}x=-\frac{14}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}+\frac{17}{6}x=-\frac{7}{3}
Reduce the fraction \frac{-14}{6} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{17}{6}x+\left(\frac{17}{12}\right)^{2}=-\frac{7}{3}+\left(\frac{17}{12}\right)^{2}
Divide \frac{17}{6}, the coefficient of the x term, by 2 to get \frac{17}{12}. Then add the square of \frac{17}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{17}{6}x+\frac{289}{144}=-\frac{7}{3}+\frac{289}{144}
Square \frac{17}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{17}{6}x+\frac{289}{144}=-\frac{47}{144}
Add -\frac{7}{3} to \frac{289}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{17}{12}\right)^{2}=-\frac{47}{144}
Factor x^{2}+\frac{17}{6}x+\frac{289}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{17}{12}\right)^{2}}=\sqrt{-\frac{47}{144}}
Take the square root of both sides of the equation.
x+\frac{17}{12}=\frac{\sqrt{47}i}{12} x+\frac{17}{12}=-\frac{\sqrt{47}i}{12}
Simplify.
x=\frac{-17+\sqrt{47}i}{12} x=\frac{-\sqrt{47}i-17}{12}
Subtract \frac{17}{12} from both sides of the equation.