Solve for x
x=-\frac{2}{7}\approx -0.285714286
Graph
Share
Copied to clipboard
\left(15x+2\right)\left(2x+3\right)=\left(5x-1\right)\left(6x+4\right)
Variable x cannot be equal to any of the values -\frac{2}{15},\frac{1}{5} since division by zero is not defined. Multiply both sides of the equation by \left(5x-1\right)\left(15x+2\right), the least common multiple of 5x-1,15x+2.
30x^{2}+49x+6=\left(5x-1\right)\left(6x+4\right)
Use the distributive property to multiply 15x+2 by 2x+3 and combine like terms.
30x^{2}+49x+6=30x^{2}+14x-4
Use the distributive property to multiply 5x-1 by 6x+4 and combine like terms.
30x^{2}+49x+6-30x^{2}=14x-4
Subtract 30x^{2} from both sides.
49x+6=14x-4
Combine 30x^{2} and -30x^{2} to get 0.
49x+6-14x=-4
Subtract 14x from both sides.
35x+6=-4
Combine 49x and -14x to get 35x.
35x=-4-6
Subtract 6 from both sides.
35x=-10
Subtract 6 from -4 to get -10.
x=\frac{-10}{35}
Divide both sides by 35.
x=-\frac{2}{7}
Reduce the fraction \frac{-10}{35} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}