Solve for x
x = -\frac{19}{6} = -3\frac{1}{6} \approx -3.166666667
Graph
Share
Copied to clipboard
3\left(2x+1\right)+2\left(2x-1\right)=6\left(2x-1\right)-12x-12+4x
Multiply both sides of the equation by 12, the least common multiple of 4,6,2,3.
6x+3+2\left(2x-1\right)=6\left(2x-1\right)-12x-12+4x
Use the distributive property to multiply 3 by 2x+1.
6x+3+4x-2=6\left(2x-1\right)-12x-12+4x
Use the distributive property to multiply 2 by 2x-1.
10x+3-2=6\left(2x-1\right)-12x-12+4x
Combine 6x and 4x to get 10x.
10x+1=6\left(2x-1\right)-12x-12+4x
Subtract 2 from 3 to get 1.
10x+1=12x-6-12x-12+4x
Use the distributive property to multiply 6 by 2x-1.
10x+1=-6-12+4x
Combine 12x and -12x to get 0.
10x+1=-18+4x
Subtract 12 from -6 to get -18.
10x+1-4x=-18
Subtract 4x from both sides.
6x+1=-18
Combine 10x and -4x to get 6x.
6x=-18-1
Subtract 1 from both sides.
6x=-19
Subtract 1 from -18 to get -19.
x=\frac{-19}{6}
Divide both sides by 6.
x=-\frac{19}{6}
Fraction \frac{-19}{6} can be rewritten as -\frac{19}{6} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}