Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(6x+30\right)\times 2x+\left(6x-48\right)\times 3x=\left(x-8\right)\left(x+5\right)\left(5\times 6+1\right)
Variable x cannot be equal to any of the values -5,8 since division by zero is not defined. Multiply both sides of the equation by 6\left(x-8\right)\left(x+5\right), the least common multiple of x-8,x+5,6.
\left(12x+60\right)x+\left(6x-48\right)\times 3x=\left(x-8\right)\left(x+5\right)\left(5\times 6+1\right)
Use the distributive property to multiply 6x+30 by 2.
12x^{2}+60x+\left(6x-48\right)\times 3x=\left(x-8\right)\left(x+5\right)\left(5\times 6+1\right)
Use the distributive property to multiply 12x+60 by x.
12x^{2}+60x+\left(18x-144\right)x=\left(x-8\right)\left(x+5\right)\left(5\times 6+1\right)
Use the distributive property to multiply 6x-48 by 3.
12x^{2}+60x+18x^{2}-144x=\left(x-8\right)\left(x+5\right)\left(5\times 6+1\right)
Use the distributive property to multiply 18x-144 by x.
30x^{2}+60x-144x=\left(x-8\right)\left(x+5\right)\left(5\times 6+1\right)
Combine 12x^{2} and 18x^{2} to get 30x^{2}.
30x^{2}-84x=\left(x-8\right)\left(x+5\right)\left(5\times 6+1\right)
Combine 60x and -144x to get -84x.
30x^{2}-84x=\left(x-8\right)\left(x+5\right)\left(30+1\right)
Multiply 5 and 6 to get 30.
30x^{2}-84x=\left(x-8\right)\left(x+5\right)\times 31
Add 30 and 1 to get 31.
30x^{2}-84x=\left(x^{2}-3x-40\right)\times 31
Use the distributive property to multiply x-8 by x+5 and combine like terms.
30x^{2}-84x=31x^{2}-93x-1240
Use the distributive property to multiply x^{2}-3x-40 by 31.
30x^{2}-84x-31x^{2}=-93x-1240
Subtract 31x^{2} from both sides.
-x^{2}-84x=-93x-1240
Combine 30x^{2} and -31x^{2} to get -x^{2}.
-x^{2}-84x+93x=-1240
Add 93x to both sides.
-x^{2}+9x=-1240
Combine -84x and 93x to get 9x.
-x^{2}+9x+1240=0
Add 1240 to both sides.
x=\frac{-9±\sqrt{9^{2}-4\left(-1\right)\times 1240}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 9 for b, and 1240 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\left(-1\right)\times 1240}}{2\left(-1\right)}
Square 9.
x=\frac{-9±\sqrt{81+4\times 1240}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-9±\sqrt{81+4960}}{2\left(-1\right)}
Multiply 4 times 1240.
x=\frac{-9±\sqrt{5041}}{2\left(-1\right)}
Add 81 to 4960.
x=\frac{-9±71}{2\left(-1\right)}
Take the square root of 5041.
x=\frac{-9±71}{-2}
Multiply 2 times -1.
x=\frac{62}{-2}
Now solve the equation x=\frac{-9±71}{-2} when ± is plus. Add -9 to 71.
x=-31
Divide 62 by -2.
x=-\frac{80}{-2}
Now solve the equation x=\frac{-9±71}{-2} when ± is minus. Subtract 71 from -9.
x=40
Divide -80 by -2.
x=-31 x=40
The equation is now solved.
\left(6x+30\right)\times 2x+\left(6x-48\right)\times 3x=\left(x-8\right)\left(x+5\right)\left(5\times 6+1\right)
Variable x cannot be equal to any of the values -5,8 since division by zero is not defined. Multiply both sides of the equation by 6\left(x-8\right)\left(x+5\right), the least common multiple of x-8,x+5,6.
\left(12x+60\right)x+\left(6x-48\right)\times 3x=\left(x-8\right)\left(x+5\right)\left(5\times 6+1\right)
Use the distributive property to multiply 6x+30 by 2.
12x^{2}+60x+\left(6x-48\right)\times 3x=\left(x-8\right)\left(x+5\right)\left(5\times 6+1\right)
Use the distributive property to multiply 12x+60 by x.
12x^{2}+60x+\left(18x-144\right)x=\left(x-8\right)\left(x+5\right)\left(5\times 6+1\right)
Use the distributive property to multiply 6x-48 by 3.
12x^{2}+60x+18x^{2}-144x=\left(x-8\right)\left(x+5\right)\left(5\times 6+1\right)
Use the distributive property to multiply 18x-144 by x.
30x^{2}+60x-144x=\left(x-8\right)\left(x+5\right)\left(5\times 6+1\right)
Combine 12x^{2} and 18x^{2} to get 30x^{2}.
30x^{2}-84x=\left(x-8\right)\left(x+5\right)\left(5\times 6+1\right)
Combine 60x and -144x to get -84x.
30x^{2}-84x=\left(x-8\right)\left(x+5\right)\left(30+1\right)
Multiply 5 and 6 to get 30.
30x^{2}-84x=\left(x-8\right)\left(x+5\right)\times 31
Add 30 and 1 to get 31.
30x^{2}-84x=\left(x^{2}-3x-40\right)\times 31
Use the distributive property to multiply x-8 by x+5 and combine like terms.
30x^{2}-84x=31x^{2}-93x-1240
Use the distributive property to multiply x^{2}-3x-40 by 31.
30x^{2}-84x-31x^{2}=-93x-1240
Subtract 31x^{2} from both sides.
-x^{2}-84x=-93x-1240
Combine 30x^{2} and -31x^{2} to get -x^{2}.
-x^{2}-84x+93x=-1240
Add 93x to both sides.
-x^{2}+9x=-1240
Combine -84x and 93x to get 9x.
\frac{-x^{2}+9x}{-1}=-\frac{1240}{-1}
Divide both sides by -1.
x^{2}+\frac{9}{-1}x=-\frac{1240}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-9x=-\frac{1240}{-1}
Divide 9 by -1.
x^{2}-9x=1240
Divide -1240 by -1.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=1240+\left(-\frac{9}{2}\right)^{2}
Divide -9, the coefficient of the x term, by 2 to get -\frac{9}{2}. Then add the square of -\frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-9x+\frac{81}{4}=1240+\frac{81}{4}
Square -\frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-9x+\frac{81}{4}=\frac{5041}{4}
Add 1240 to \frac{81}{4}.
\left(x-\frac{9}{2}\right)^{2}=\frac{5041}{4}
Factor x^{2}-9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{5041}{4}}
Take the square root of both sides of the equation.
x-\frac{9}{2}=\frac{71}{2} x-\frac{9}{2}=-\frac{71}{2}
Simplify.
x=40 x=-31
Add \frac{9}{2} to both sides of the equation.