Evaluate
\frac{x\left(-5x^{2}+2x+c-4\right)}{\left(x-2\right)\left(5x^{2}-c\right)}
Factor
\frac{x\left(-5x^{2}+2x+c-4\right)}{\left(x-2\right)\left(5x^{2}-c\right)}
Graph
Share
Copied to clipboard
\frac{2x\left(x-2\right)}{\left(x-2\right)\left(5x^{2}-c\right)}-\frac{x\left(5x^{2}-c\right)}{\left(x-2\right)\left(5x^{2}-c\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5x^{2}-c and x-2 is \left(x-2\right)\left(5x^{2}-c\right). Multiply \frac{2x}{5x^{2}-c} times \frac{x-2}{x-2}. Multiply \frac{x}{x-2} times \frac{5x^{2}-c}{5x^{2}-c}.
\frac{2x\left(x-2\right)-x\left(5x^{2}-c\right)}{\left(x-2\right)\left(5x^{2}-c\right)}
Since \frac{2x\left(x-2\right)}{\left(x-2\right)\left(5x^{2}-c\right)} and \frac{x\left(5x^{2}-c\right)}{\left(x-2\right)\left(5x^{2}-c\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}-4x-5x^{3}+xc}{\left(x-2\right)\left(5x^{2}-c\right)}
Do the multiplications in 2x\left(x-2\right)-x\left(5x^{2}-c\right).
\frac{2x^{2}-4x-5x^{3}+xc}{5x^{3}-10x^{2}-cx+2c}
Expand \left(x-2\right)\left(5x^{2}-c\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}