Solve for x
x=-\frac{1}{368}\approx -0.002717391
Graph
Share
Copied to clipboard
180\left(\frac{2x}{3}+\frac{4}{5}\right)-270\left(\frac{8x}{15}+\frac{4}{9}\right)=315-240\left(\frac{6}{5}-\frac{9x}{2}\right)
Multiply both sides of the equation by 180, the least common multiple of 3,5,2,15,9,4.
180\left(\frac{5\times 2x}{15}+\frac{4\times 3}{15}\right)-270\left(\frac{8x}{15}+\frac{4}{9}\right)=315-240\left(\frac{6}{5}-\frac{9x}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 5 is 15. Multiply \frac{2x}{3} times \frac{5}{5}. Multiply \frac{4}{5} times \frac{3}{3}.
180\times \frac{5\times 2x+4\times 3}{15}-270\left(\frac{8x}{15}+\frac{4}{9}\right)=315-240\left(\frac{6}{5}-\frac{9x}{2}\right)
Since \frac{5\times 2x}{15} and \frac{4\times 3}{15} have the same denominator, add them by adding their numerators.
180\times \frac{10x+12}{15}-270\left(\frac{8x}{15}+\frac{4}{9}\right)=315-240\left(\frac{6}{5}-\frac{9x}{2}\right)
Do the multiplications in 5\times 2x+4\times 3.
12\left(10x+12\right)-270\left(\frac{8x}{15}+\frac{4}{9}\right)=315-240\left(\frac{6}{5}-\frac{9x}{2}\right)
Cancel out 15, the greatest common factor in 180 and 15.
120x+144-270\left(\frac{8x}{15}+\frac{4}{9}\right)=315-240\left(\frac{6}{5}-\frac{9x}{2}\right)
Use the distributive property to multiply 12 by 10x+12.
120x+144-270\left(\frac{3\times 8x}{45}+\frac{4\times 5}{45}\right)=315-240\left(\frac{6}{5}-\frac{9x}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 15 and 9 is 45. Multiply \frac{8x}{15} times \frac{3}{3}. Multiply \frac{4}{9} times \frac{5}{5}.
120x+144-270\times \frac{3\times 8x+4\times 5}{45}=315-240\left(\frac{6}{5}-\frac{9x}{2}\right)
Since \frac{3\times 8x}{45} and \frac{4\times 5}{45} have the same denominator, add them by adding their numerators.
120x+144-270\times \frac{24x+20}{45}=315-240\left(\frac{6}{5}-\frac{9x}{2}\right)
Do the multiplications in 3\times 8x+4\times 5.
120x+144-6\left(24x+20\right)=315-240\left(\frac{6}{5}-\frac{9x}{2}\right)
Cancel out 45, the greatest common factor in 270 and 45.
120x+144-144x-120=315-240\left(\frac{6}{5}-\frac{9x}{2}\right)
Use the distributive property to multiply -6 by 24x+20.
-24x+144-120=315-240\left(\frac{6}{5}-\frac{9x}{2}\right)
Combine 120x and -144x to get -24x.
-24x+24=315-240\left(\frac{6}{5}-\frac{9x}{2}\right)
Subtract 120 from 144 to get 24.
-24x+24=315-240\left(\frac{6\times 2}{10}-\frac{5\times 9x}{10}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 2 is 10. Multiply \frac{6}{5} times \frac{2}{2}. Multiply \frac{9x}{2} times \frac{5}{5}.
-24x+24=315-240\times \frac{6\times 2-5\times 9x}{10}
Since \frac{6\times 2}{10} and \frac{5\times 9x}{10} have the same denominator, subtract them by subtracting their numerators.
-24x+24=315-240\times \frac{12-45x}{10}
Do the multiplications in 6\times 2-5\times 9x.
-24x+24=315-24\left(12-45x\right)
Cancel out 10, the greatest common factor in 240 and 10.
-24x+24=315-288+1080x
Use the distributive property to multiply -24 by 12-45x.
-24x+24=27+1080x
Subtract 288 from 315 to get 27.
-24x+24-1080x=27
Subtract 1080x from both sides.
-1104x+24=27
Combine -24x and -1080x to get -1104x.
-1104x=27-24
Subtract 24 from both sides.
-1104x=3
Subtract 24 from 27 to get 3.
x=\frac{3}{-1104}
Divide both sides by -1104.
x=-\frac{1}{368}
Reduce the fraction \frac{3}{-1104} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}