Solve for x
\left\{\begin{matrix}x=-\frac{yz}{1-2z}\text{, }&z\neq \frac{1}{2}\text{ and }z\neq 0\\x\in \mathrm{R}\text{, }&z=\frac{1}{2}\text{ and }y=0\end{matrix}\right.
Solve for y
y=\frac{x\left(2z-1\right)}{z}
z\neq 0
Share
Copied to clipboard
2x=2x\times 2z-y\times 2z
Multiply both sides of the equation by 2z.
2x=4xz-y\times 2z
Multiply 2 and 2 to get 4.
2x=4xz-2yz
Multiply -1 and 2 to get -2.
2x-4xz=-2yz
Subtract 4xz from both sides.
\left(2-4z\right)x=-2yz
Combine all terms containing x.
\frac{\left(2-4z\right)x}{2-4z}=-\frac{2yz}{2-4z}
Divide both sides by 2-4z.
x=-\frac{2yz}{2-4z}
Dividing by 2-4z undoes the multiplication by 2-4z.
x=-\frac{yz}{1-2z}
Divide -2yz by 2-4z.
2x=2x\times 2z-y\times 2z
Multiply both sides of the equation by 2z.
2x=4xz-y\times 2z
Multiply 2 and 2 to get 4.
2x=4xz-2yz
Multiply -1 and 2 to get -2.
4xz-2yz=2x
Swap sides so that all variable terms are on the left hand side.
-2yz=2x-4xz
Subtract 4xz from both sides.
\left(-2z\right)y=2x-4xz
The equation is in standard form.
\frac{\left(-2z\right)y}{-2z}=\frac{2x-4xz}{-2z}
Divide both sides by -2z.
y=\frac{2x-4xz}{-2z}
Dividing by -2z undoes the multiplication by -2z.
y=2x-\frac{x}{z}
Divide 2x-4xz by -2z.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}