Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2x}{\left(x-3\right)\left(x+3\right)}+\frac{x}{\left(x+3\right)^{2}}-\frac{3}{x+3}
Factor x^{2}-9. Factor x^{2}+6x+9.
\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)^{2}}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)^{2}}-\frac{3}{x+3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+3\right) and \left(x+3\right)^{2} is \left(x-3\right)\left(x+3\right)^{2}. Multiply \frac{2x}{\left(x-3\right)\left(x+3\right)} times \frac{x+3}{x+3}. Multiply \frac{x}{\left(x+3\right)^{2}} times \frac{x-3}{x-3}.
\frac{2x\left(x+3\right)+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)^{2}}-\frac{3}{x+3}
Since \frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)^{2}} and \frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{2x^{2}+6x+x^{2}-3x}{\left(x-3\right)\left(x+3\right)^{2}}-\frac{3}{x+3}
Do the multiplications in 2x\left(x+3\right)+x\left(x-3\right).
\frac{3x^{2}+3x}{\left(x-3\right)\left(x+3\right)^{2}}-\frac{3}{x+3}
Combine like terms in 2x^{2}+6x+x^{2}-3x.
\frac{3x^{2}+3x}{\left(x-3\right)\left(x+3\right)^{2}}-\frac{3\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+3\right)^{2} and x+3 is \left(x-3\right)\left(x+3\right)^{2}. Multiply \frac{3}{x+3} times \frac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}.
\frac{3x^{2}+3x-3\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)^{2}}
Since \frac{3x^{2}+3x}{\left(x-3\right)\left(x+3\right)^{2}} and \frac{3\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}+3x-3x^{2}-9x+9x+27}{\left(x-3\right)\left(x+3\right)^{2}}
Do the multiplications in 3x^{2}+3x-3\left(x-3\right)\left(x+3\right).
\frac{3x+27}{\left(x-3\right)\left(x+3\right)^{2}}
Combine like terms in 3x^{2}+3x-3x^{2}-9x+9x+27.
\frac{3x+27}{x^{3}+3x^{2}-9x-27}
Expand \left(x-3\right)\left(x+3\right)^{2}.