Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{2i\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2+i.
\frac{2i\left(2+i\right)}{2^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2i\left(2+i\right)}{5}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2i\times 2+2i^{2}}{5}
Multiply 2i times 2+i.
\frac{2i\times 2+2\left(-1\right)}{5}
By definition, i^{2} is -1.
\frac{-2+4i}{5}
Do the multiplications in 2i\times 2+2\left(-1\right). Reorder the terms.
-\frac{2}{5}+\frac{4}{5}i
Divide -2+4i by 5 to get -\frac{2}{5}+\frac{4}{5}i.
Re(\frac{2i\left(2+i\right)}{\left(2-i\right)\left(2+i\right)})
Multiply both numerator and denominator of \frac{2i}{2-i} by the complex conjugate of the denominator, 2+i.
Re(\frac{2i\left(2+i\right)}{2^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{2i\left(2+i\right)}{5})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2i\times 2+2i^{2}}{5})
Multiply 2i times 2+i.
Re(\frac{2i\times 2+2\left(-1\right)}{5})
By definition, i^{2} is -1.
Re(\frac{-2+4i}{5})
Do the multiplications in 2i\times 2+2\left(-1\right). Reorder the terms.
Re(-\frac{2}{5}+\frac{4}{5}i)
Divide -2+4i by 5 to get -\frac{2}{5}+\frac{4}{5}i.
-\frac{2}{5}
The real part of -\frac{2}{5}+\frac{4}{5}i is -\frac{2}{5}.