Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. b
Tick mark Image

Similar Problems from Web Search

Share

\frac{2b}{\left(b+2\right)\left(b+8\right)}+\frac{7}{\left(b-8\right)\left(b+8\right)}
Factor b^{2}+10b+16. Factor b^{2}-64.
\frac{2b\left(b-8\right)}{\left(b-8\right)\left(b+2\right)\left(b+8\right)}+\frac{7\left(b+2\right)}{\left(b-8\right)\left(b+2\right)\left(b+8\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(b+2\right)\left(b+8\right) and \left(b-8\right)\left(b+8\right) is \left(b-8\right)\left(b+2\right)\left(b+8\right). Multiply \frac{2b}{\left(b+2\right)\left(b+8\right)} times \frac{b-8}{b-8}. Multiply \frac{7}{\left(b-8\right)\left(b+8\right)} times \frac{b+2}{b+2}.
\frac{2b\left(b-8\right)+7\left(b+2\right)}{\left(b-8\right)\left(b+2\right)\left(b+8\right)}
Since \frac{2b\left(b-8\right)}{\left(b-8\right)\left(b+2\right)\left(b+8\right)} and \frac{7\left(b+2\right)}{\left(b-8\right)\left(b+2\right)\left(b+8\right)} have the same denominator, add them by adding their numerators.
\frac{2b^{2}-16b+7b+14}{\left(b-8\right)\left(b+2\right)\left(b+8\right)}
Do the multiplications in 2b\left(b-8\right)+7\left(b+2\right).
\frac{2b^{2}-9b+14}{\left(b-8\right)\left(b+2\right)\left(b+8\right)}
Combine like terms in 2b^{2}-16b+7b+14.
\frac{2b^{2}-9b+14}{b^{3}+2b^{2}-64b-128}
Expand \left(b-8\right)\left(b+2\right)\left(b+8\right).