Solve for x
x=\frac{1427-\sqrt{2102549}}{14}\approx -1.644064032
x = \frac{\sqrt{2102549} + 1427}{14} \approx 205.50120689
Graph
Share
Copied to clipboard
\left(203x+435\right)\times 29+\left(203x+232\right)\times 29=\left(98x^{2}+322x+240\right)\times 0.58
Variable x cannot be equal to any of the values -\frac{15}{7},-\frac{8}{7} since division by zero is not defined. Multiply both sides of the equation by 58\left(7x+8\right)\left(7x+15\right), the least common multiple of 14x+16,14x+30,29.
5887x+12615+\left(203x+232\right)\times 29=\left(98x^{2}+322x+240\right)\times 0.58
Use the distributive property to multiply 203x+435 by 29.
5887x+12615+5887x+6728=\left(98x^{2}+322x+240\right)\times 0.58
Use the distributive property to multiply 203x+232 by 29.
11774x+12615+6728=\left(98x^{2}+322x+240\right)\times 0.58
Combine 5887x and 5887x to get 11774x.
11774x+19343=\left(98x^{2}+322x+240\right)\times 0.58
Add 12615 and 6728 to get 19343.
11774x+19343=56.84x^{2}+186.76x+139.2
Use the distributive property to multiply 98x^{2}+322x+240 by 0.58.
11774x+19343-56.84x^{2}=186.76x+139.2
Subtract 56.84x^{2} from both sides.
11774x+19343-56.84x^{2}-186.76x=139.2
Subtract 186.76x from both sides.
11587.24x+19343-56.84x^{2}=139.2
Combine 11774x and -186.76x to get 11587.24x.
11587.24x+19343-56.84x^{2}-139.2=0
Subtract 139.2 from both sides.
11587.24x+19203.8-56.84x^{2}=0
Subtract 139.2 from 19343 to get 19203.8.
-56.84x^{2}+11587.24x+19203.8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-11587.24±\sqrt{11587.24^{2}-4\left(-56.84\right)\times 19203.8}}{2\left(-56.84\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -56.84 for a, 11587.24 for b, and 19203.8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11587.24±\sqrt{134264130.8176-4\left(-56.84\right)\times 19203.8}}{2\left(-56.84\right)}
Square 11587.24 by squaring both the numerator and the denominator of the fraction.
x=\frac{-11587.24±\sqrt{134264130.8176+227.36\times 19203.8}}{2\left(-56.84\right)}
Multiply -4 times -56.84.
x=\frac{-11587.24±\sqrt{134264130.8176+4366175.968}}{2\left(-56.84\right)}
Multiply 227.36 times 19203.8 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-11587.24±\sqrt{138630306.7856}}{2\left(-56.84\right)}
Add 134264130.8176 to 4366175.968 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-11587.24±\frac{203\sqrt{2102549}}{25}}{2\left(-56.84\right)}
Take the square root of 138630306.7856.
x=\frac{-11587.24±\frac{203\sqrt{2102549}}{25}}{-113.68}
Multiply 2 times -56.84.
x=\frac{203\sqrt{2102549}-289681}{-113.68\times 25}
Now solve the equation x=\frac{-11587.24±\frac{203\sqrt{2102549}}{25}}{-113.68} when ± is plus. Add -11587.24 to \frac{203\sqrt{2102549}}{25}.
x=\frac{1427-\sqrt{2102549}}{14}
Divide \frac{-289681+203\sqrt{2102549}}{25} by -113.68 by multiplying \frac{-289681+203\sqrt{2102549}}{25} by the reciprocal of -113.68.
x=\frac{-203\sqrt{2102549}-289681}{-113.68\times 25}
Now solve the equation x=\frac{-11587.24±\frac{203\sqrt{2102549}}{25}}{-113.68} when ± is minus. Subtract \frac{203\sqrt{2102549}}{25} from -11587.24.
x=\frac{\sqrt{2102549}+1427}{14}
Divide \frac{-289681-203\sqrt{2102549}}{25} by -113.68 by multiplying \frac{-289681-203\sqrt{2102549}}{25} by the reciprocal of -113.68.
x=\frac{1427-\sqrt{2102549}}{14} x=\frac{\sqrt{2102549}+1427}{14}
The equation is now solved.
\left(203x+435\right)\times 29+\left(203x+232\right)\times 29=\left(98x^{2}+322x+240\right)\times 0.58
Variable x cannot be equal to any of the values -\frac{15}{7},-\frac{8}{7} since division by zero is not defined. Multiply both sides of the equation by 58\left(7x+8\right)\left(7x+15\right), the least common multiple of 14x+16,14x+30,29.
5887x+12615+\left(203x+232\right)\times 29=\left(98x^{2}+322x+240\right)\times 0.58
Use the distributive property to multiply 203x+435 by 29.
5887x+12615+5887x+6728=\left(98x^{2}+322x+240\right)\times 0.58
Use the distributive property to multiply 203x+232 by 29.
11774x+12615+6728=\left(98x^{2}+322x+240\right)\times 0.58
Combine 5887x and 5887x to get 11774x.
11774x+19343=\left(98x^{2}+322x+240\right)\times 0.58
Add 12615 and 6728 to get 19343.
11774x+19343=56.84x^{2}+186.76x+139.2
Use the distributive property to multiply 98x^{2}+322x+240 by 0.58.
11774x+19343-56.84x^{2}=186.76x+139.2
Subtract 56.84x^{2} from both sides.
11774x+19343-56.84x^{2}-186.76x=139.2
Subtract 186.76x from both sides.
11587.24x+19343-56.84x^{2}=139.2
Combine 11774x and -186.76x to get 11587.24x.
11587.24x-56.84x^{2}=139.2-19343
Subtract 19343 from both sides.
11587.24x-56.84x^{2}=-19203.8
Subtract 19343 from 139.2 to get -19203.8.
-56.84x^{2}+11587.24x=-19203.8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-56.84x^{2}+11587.24x}{-56.84}=-\frac{19203.8}{-56.84}
Divide both sides of the equation by -56.84, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{11587.24}{-56.84}x=-\frac{19203.8}{-56.84}
Dividing by -56.84 undoes the multiplication by -56.84.
x^{2}-\frac{1427}{7}x=-\frac{19203.8}{-56.84}
Divide 11587.24 by -56.84 by multiplying 11587.24 by the reciprocal of -56.84.
x^{2}-\frac{1427}{7}x=\frac{2365}{7}
Divide -19203.8 by -56.84 by multiplying -19203.8 by the reciprocal of -56.84.
x^{2}-\frac{1427}{7}x+\left(-\frac{1427}{14}\right)^{2}=\frac{2365}{7}+\left(-\frac{1427}{14}\right)^{2}
Divide -\frac{1427}{7}, the coefficient of the x term, by 2 to get -\frac{1427}{14}. Then add the square of -\frac{1427}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1427}{7}x+\frac{2036329}{196}=\frac{2365}{7}+\frac{2036329}{196}
Square -\frac{1427}{14} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1427}{7}x+\frac{2036329}{196}=\frac{2102549}{196}
Add \frac{2365}{7} to \frac{2036329}{196} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1427}{14}\right)^{2}=\frac{2102549}{196}
Factor x^{2}-\frac{1427}{7}x+\frac{2036329}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1427}{14}\right)^{2}}=\sqrt{\frac{2102549}{196}}
Take the square root of both sides of the equation.
x-\frac{1427}{14}=\frac{\sqrt{2102549}}{14} x-\frac{1427}{14}=-\frac{\sqrt{2102549}}{14}
Simplify.
x=\frac{\sqrt{2102549}+1427}{14} x=\frac{1427-\sqrt{2102549}}{14}
Add \frac{1427}{14} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}