Evaluate
\frac{289}{50}=5.78
Factor
\frac{17 ^ {2}}{2 \cdot 5 ^ {2}} = 5\frac{39}{50} = 5.78
Share
Copied to clipboard
\begin{array}{l}\phantom{50)}\phantom{1}\\50\overline{)289}\\\end{array}
Use the 1^{st} digit 2 from dividend 289
\begin{array}{l}\phantom{50)}0\phantom{2}\\50\overline{)289}\\\end{array}
Since 2 is less than 50, use the next digit 8 from dividend 289 and add 0 to the quotient
\begin{array}{l}\phantom{50)}0\phantom{3}\\50\overline{)289}\\\end{array}
Use the 2^{nd} digit 8 from dividend 289
\begin{array}{l}\phantom{50)}00\phantom{4}\\50\overline{)289}\\\end{array}
Since 28 is less than 50, use the next digit 9 from dividend 289 and add 0 to the quotient
\begin{array}{l}\phantom{50)}00\phantom{5}\\50\overline{)289}\\\end{array}
Use the 3^{rd} digit 9 from dividend 289
\begin{array}{l}\phantom{50)}005\phantom{6}\\50\overline{)289}\\\phantom{50)}\underline{\phantom{}250\phantom{}}\\\phantom{50)9}39\\\end{array}
Find closest multiple of 50 to 289. We see that 5 \times 50 = 250 is the nearest. Now subtract 250 from 289 to get reminder 39. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }39
Since 39 is less than 50, stop the division. The reminder is 39. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}