Evaluate
\frac{56}{19}\approx 2.947368421
Factor
\frac{2 ^ {3} \cdot 7}{19} = 2\frac{18}{19} = 2.9473684210526314
Share
Copied to clipboard
\begin{array}{l}\phantom{95)}\phantom{1}\\95\overline{)280}\\\end{array}
Use the 1^{st} digit 2 from dividend 280
\begin{array}{l}\phantom{95)}0\phantom{2}\\95\overline{)280}\\\end{array}
Since 2 is less than 95, use the next digit 8 from dividend 280 and add 0 to the quotient
\begin{array}{l}\phantom{95)}0\phantom{3}\\95\overline{)280}\\\end{array}
Use the 2^{nd} digit 8 from dividend 280
\begin{array}{l}\phantom{95)}00\phantom{4}\\95\overline{)280}\\\end{array}
Since 28 is less than 95, use the next digit 0 from dividend 280 and add 0 to the quotient
\begin{array}{l}\phantom{95)}00\phantom{5}\\95\overline{)280}\\\end{array}
Use the 3^{rd} digit 0 from dividend 280
\begin{array}{l}\phantom{95)}002\phantom{6}\\95\overline{)280}\\\phantom{95)}\underline{\phantom{}190\phantom{}}\\\phantom{95)9}90\\\end{array}
Find closest multiple of 95 to 280. We see that 2 \times 95 = 190 is the nearest. Now subtract 190 from 280 to get reminder 90. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }90
Since 90 is less than 95, stop the division. The reminder is 90. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}