Evaluate
\frac{56}{3}\approx 18.666666667
Factor
\frac{2 ^ {3} \cdot 7}{3} = 18\frac{2}{3} = 18.666666666666668
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)280}\\\end{array}
Use the 1^{st} digit 2 from dividend 280
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)280}\\\end{array}
Since 2 is less than 15, use the next digit 8 from dividend 280 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)280}\\\end{array}
Use the 2^{nd} digit 8 from dividend 280
\begin{array}{l}\phantom{15)}01\phantom{4}\\15\overline{)280}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)}13\\\end{array}
Find closest multiple of 15 to 28. We see that 1 \times 15 = 15 is the nearest. Now subtract 15 from 28 to get reminder 13. Add 1 to quotient.
\begin{array}{l}\phantom{15)}01\phantom{5}\\15\overline{)280}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)}130\\\end{array}
Use the 3^{rd} digit 0 from dividend 280
\begin{array}{l}\phantom{15)}018\phantom{6}\\15\overline{)280}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)}130\\\phantom{15)}\underline{\phantom{}120\phantom{}}\\\phantom{15)9}10\\\end{array}
Find closest multiple of 15 to 130. We see that 8 \times 15 = 120 is the nearest. Now subtract 120 from 130 to get reminder 10. Add 8 to quotient.
\text{Quotient: }18 \text{Reminder: }10
Since 10 is less than 15, stop the division. The reminder is 10. The topmost line 018 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}