Evaluate
\frac{1373}{916}\approx 1.498908297
Factor
\frac{1373}{2 ^ {2} \cdot 229} = 1\frac{457}{916} = 1.4989082969432315
Share
Copied to clipboard
\begin{array}{l}\phantom{1832)}\phantom{1}\\1832\overline{)2746}\\\end{array}
Use the 1^{st} digit 2 from dividend 2746
\begin{array}{l}\phantom{1832)}0\phantom{2}\\1832\overline{)2746}\\\end{array}
Since 2 is less than 1832, use the next digit 7 from dividend 2746 and add 0 to the quotient
\begin{array}{l}\phantom{1832)}0\phantom{3}\\1832\overline{)2746}\\\end{array}
Use the 2^{nd} digit 7 from dividend 2746
\begin{array}{l}\phantom{1832)}00\phantom{4}\\1832\overline{)2746}\\\end{array}
Since 27 is less than 1832, use the next digit 4 from dividend 2746 and add 0 to the quotient
\begin{array}{l}\phantom{1832)}00\phantom{5}\\1832\overline{)2746}\\\end{array}
Use the 3^{rd} digit 4 from dividend 2746
\begin{array}{l}\phantom{1832)}000\phantom{6}\\1832\overline{)2746}\\\end{array}
Since 274 is less than 1832, use the next digit 6 from dividend 2746 and add 0 to the quotient
\begin{array}{l}\phantom{1832)}000\phantom{7}\\1832\overline{)2746}\\\end{array}
Use the 4^{th} digit 6 from dividend 2746
\begin{array}{l}\phantom{1832)}0001\phantom{8}\\1832\overline{)2746}\\\phantom{1832)}\underline{\phantom{}1832\phantom{}}\\\phantom{1832)9}914\\\end{array}
Find closest multiple of 1832 to 2746. We see that 1 \times 1832 = 1832 is the nearest. Now subtract 1832 from 2746 to get reminder 914. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }914
Since 914 is less than 1832, stop the division. The reminder is 914. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}