Evaluate
225
Factor
3^{2}\times 5^{2}
Share
Copied to clipboard
\begin{array}{l}\phantom{120)}\phantom{1}\\120\overline{)27000}\\\end{array}
Use the 1^{st} digit 2 from dividend 27000
\begin{array}{l}\phantom{120)}0\phantom{2}\\120\overline{)27000}\\\end{array}
Since 2 is less than 120, use the next digit 7 from dividend 27000 and add 0 to the quotient
\begin{array}{l}\phantom{120)}0\phantom{3}\\120\overline{)27000}\\\end{array}
Use the 2^{nd} digit 7 from dividend 27000
\begin{array}{l}\phantom{120)}00\phantom{4}\\120\overline{)27000}\\\end{array}
Since 27 is less than 120, use the next digit 0 from dividend 27000 and add 0 to the quotient
\begin{array}{l}\phantom{120)}00\phantom{5}\\120\overline{)27000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 27000
\begin{array}{l}\phantom{120)}002\phantom{6}\\120\overline{)27000}\\\phantom{120)}\underline{\phantom{}240\phantom{99}}\\\phantom{120)9}30\\\end{array}
Find closest multiple of 120 to 270. We see that 2 \times 120 = 240 is the nearest. Now subtract 240 from 270 to get reminder 30. Add 2 to quotient.
\begin{array}{l}\phantom{120)}002\phantom{7}\\120\overline{)27000}\\\phantom{120)}\underline{\phantom{}240\phantom{99}}\\\phantom{120)9}300\\\end{array}
Use the 4^{th} digit 0 from dividend 27000
\begin{array}{l}\phantom{120)}0022\phantom{8}\\120\overline{)27000}\\\phantom{120)}\underline{\phantom{}240\phantom{99}}\\\phantom{120)9}300\\\phantom{120)}\underline{\phantom{9}240\phantom{9}}\\\phantom{120)99}60\\\end{array}
Find closest multiple of 120 to 300. We see that 2 \times 120 = 240 is the nearest. Now subtract 240 from 300 to get reminder 60. Add 2 to quotient.
\begin{array}{l}\phantom{120)}0022\phantom{9}\\120\overline{)27000}\\\phantom{120)}\underline{\phantom{}240\phantom{99}}\\\phantom{120)9}300\\\phantom{120)}\underline{\phantom{9}240\phantom{9}}\\\phantom{120)99}600\\\end{array}
Use the 5^{th} digit 0 from dividend 27000
\begin{array}{l}\phantom{120)}00225\phantom{10}\\120\overline{)27000}\\\phantom{120)}\underline{\phantom{}240\phantom{99}}\\\phantom{120)9}300\\\phantom{120)}\underline{\phantom{9}240\phantom{9}}\\\phantom{120)99}600\\\phantom{120)}\underline{\phantom{99}600\phantom{}}\\\phantom{120)99999}0\\\end{array}
Find closest multiple of 120 to 600. We see that 5 \times 120 = 600 is the nearest. Now subtract 600 from 600 to get reminder 0. Add 5 to quotient.
\text{Quotient: }225 \text{Reminder: }0
Since 0 is less than 120, stop the division. The reminder is 0. The topmost line 00225 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 225.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}