Solve for x
x = \frac{\sqrt{3769} + 23}{20} \approx 4.219609096
x=\frac{23-\sqrt{3769}}{20}\approx -1.919609096
Graph
Share
Copied to clipboard
\left(x-3\right)\times 27=x\times 20+x\left(x-3\right)\left(-10\right)
Variable x cannot be equal to any of the values 0,3 since division by zero is not defined. Multiply both sides of the equation by x\left(x-3\right), the least common multiple of x,x-3.
27x-81=x\times 20+x\left(x-3\right)\left(-10\right)
Use the distributive property to multiply x-3 by 27.
27x-81=x\times 20+\left(x^{2}-3x\right)\left(-10\right)
Use the distributive property to multiply x by x-3.
27x-81=x\times 20-10x^{2}+30x
Use the distributive property to multiply x^{2}-3x by -10.
27x-81=50x-10x^{2}
Combine x\times 20 and 30x to get 50x.
27x-81-50x=-10x^{2}
Subtract 50x from both sides.
-23x-81=-10x^{2}
Combine 27x and -50x to get -23x.
-23x-81+10x^{2}=0
Add 10x^{2} to both sides.
10x^{2}-23x-81=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-23\right)±\sqrt{\left(-23\right)^{2}-4\times 10\left(-81\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -23 for b, and -81 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-23\right)±\sqrt{529-4\times 10\left(-81\right)}}{2\times 10}
Square -23.
x=\frac{-\left(-23\right)±\sqrt{529-40\left(-81\right)}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-23\right)±\sqrt{529+3240}}{2\times 10}
Multiply -40 times -81.
x=\frac{-\left(-23\right)±\sqrt{3769}}{2\times 10}
Add 529 to 3240.
x=\frac{23±\sqrt{3769}}{2\times 10}
The opposite of -23 is 23.
x=\frac{23±\sqrt{3769}}{20}
Multiply 2 times 10.
x=\frac{\sqrt{3769}+23}{20}
Now solve the equation x=\frac{23±\sqrt{3769}}{20} when ± is plus. Add 23 to \sqrt{3769}.
x=\frac{23-\sqrt{3769}}{20}
Now solve the equation x=\frac{23±\sqrt{3769}}{20} when ± is minus. Subtract \sqrt{3769} from 23.
x=\frac{\sqrt{3769}+23}{20} x=\frac{23-\sqrt{3769}}{20}
The equation is now solved.
\left(x-3\right)\times 27=x\times 20+x\left(x-3\right)\left(-10\right)
Variable x cannot be equal to any of the values 0,3 since division by zero is not defined. Multiply both sides of the equation by x\left(x-3\right), the least common multiple of x,x-3.
27x-81=x\times 20+x\left(x-3\right)\left(-10\right)
Use the distributive property to multiply x-3 by 27.
27x-81=x\times 20+\left(x^{2}-3x\right)\left(-10\right)
Use the distributive property to multiply x by x-3.
27x-81=x\times 20-10x^{2}+30x
Use the distributive property to multiply x^{2}-3x by -10.
27x-81=50x-10x^{2}
Combine x\times 20 and 30x to get 50x.
27x-81-50x=-10x^{2}
Subtract 50x from both sides.
-23x-81=-10x^{2}
Combine 27x and -50x to get -23x.
-23x-81+10x^{2}=0
Add 10x^{2} to both sides.
-23x+10x^{2}=81
Add 81 to both sides. Anything plus zero gives itself.
10x^{2}-23x=81
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{10x^{2}-23x}{10}=\frac{81}{10}
Divide both sides by 10.
x^{2}-\frac{23}{10}x=\frac{81}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}-\frac{23}{10}x+\left(-\frac{23}{20}\right)^{2}=\frac{81}{10}+\left(-\frac{23}{20}\right)^{2}
Divide -\frac{23}{10}, the coefficient of the x term, by 2 to get -\frac{23}{20}. Then add the square of -\frac{23}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{23}{10}x+\frac{529}{400}=\frac{81}{10}+\frac{529}{400}
Square -\frac{23}{20} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{23}{10}x+\frac{529}{400}=\frac{3769}{400}
Add \frac{81}{10} to \frac{529}{400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{23}{20}\right)^{2}=\frac{3769}{400}
Factor x^{2}-\frac{23}{10}x+\frac{529}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{23}{20}\right)^{2}}=\sqrt{\frac{3769}{400}}
Take the square root of both sides of the equation.
x-\frac{23}{20}=\frac{\sqrt{3769}}{20} x-\frac{23}{20}=-\frac{\sqrt{3769}}{20}
Simplify.
x=\frac{\sqrt{3769}+23}{20} x=\frac{23-\sqrt{3769}}{20}
Add \frac{23}{20} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}