Solve for x
x=\frac{2}{7}\approx 0.285714286
Graph
Share
Copied to clipboard
x\times \frac{\frac{27}{8}}{\frac{3}{2}}=\frac{18}{28}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x\times \frac{27}{8}\times \frac{2}{3}=\frac{18}{28}
Divide \frac{27}{8} by \frac{3}{2} by multiplying \frac{27}{8} by the reciprocal of \frac{3}{2}.
x\times \frac{27\times 2}{8\times 3}=\frac{18}{28}
Multiply \frac{27}{8} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
x\times \frac{54}{24}=\frac{18}{28}
Do the multiplications in the fraction \frac{27\times 2}{8\times 3}.
x\times \frac{9}{4}=\frac{18}{28}
Reduce the fraction \frac{54}{24} to lowest terms by extracting and canceling out 6.
x\times \frac{9}{4}=\frac{9}{14}
Reduce the fraction \frac{18}{28} to lowest terms by extracting and canceling out 2.
x=\frac{9}{14}\times \frac{4}{9}
Multiply both sides by \frac{4}{9}, the reciprocal of \frac{9}{4}.
x=\frac{9\times 4}{14\times 9}
Multiply \frac{9}{14} times \frac{4}{9} by multiplying numerator times numerator and denominator times denominator.
x=\frac{4}{14}
Cancel out 9 in both numerator and denominator.
x=\frac{2}{7}
Reduce the fraction \frac{4}{14} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}