Evaluate
\frac{975\sqrt{7}}{196}\approx 13.161262899
Share
Copied to clipboard
\frac{26325\times \frac{5}{5\sqrt{63}}}{252}
Divide 26325 by \frac{252}{\frac{5}{5\sqrt{63}}} by multiplying 26325 by the reciprocal of \frac{252}{\frac{5}{5\sqrt{63}}}.
\frac{26325\times \frac{5}{5\times 3\sqrt{7}}}{252}
Factor 63=3^{2}\times 7. Rewrite the square root of the product \sqrt{3^{2}\times 7} as the product of square roots \sqrt{3^{2}}\sqrt{7}. Take the square root of 3^{2}.
\frac{26325\times \frac{5}{15\sqrt{7}}}{252}
Multiply 5 and 3 to get 15.
\frac{26325\times \frac{5\sqrt{7}}{15\left(\sqrt{7}\right)^{2}}}{252}
Rationalize the denominator of \frac{5}{15\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{26325\times \frac{5\sqrt{7}}{15\times 7}}{252}
The square of \sqrt{7} is 7.
\frac{26325\times \frac{\sqrt{7}}{3\times 7}}{252}
Cancel out 5 in both numerator and denominator.
\frac{26325\times \frac{\sqrt{7}}{21}}{252}
Multiply 3 and 7 to get 21.
\frac{\frac{26325\sqrt{7}}{21}}{252}
Express 26325\times \frac{\sqrt{7}}{21} as a single fraction.
\frac{26325\sqrt{7}}{21\times 252}
Express \frac{\frac{26325\sqrt{7}}{21}}{252} as a single fraction.
\frac{975\sqrt{7}}{7\times 28}
Cancel out 3\times 9 in both numerator and denominator.
\frac{975\sqrt{7}}{196}
Multiply 7 and 28 to get 196.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}