Evaluate
\frac{259}{250}=1.036
Factor
\frac{7 \cdot 37}{2 \cdot 5 ^ {3}} = 1\frac{9}{250} = 1.036
Share
Copied to clipboard
\begin{array}{l}\phantom{250)}\phantom{1}\\250\overline{)259}\\\end{array}
Use the 1^{st} digit 2 from dividend 259
\begin{array}{l}\phantom{250)}0\phantom{2}\\250\overline{)259}\\\end{array}
Since 2 is less than 250, use the next digit 5 from dividend 259 and add 0 to the quotient
\begin{array}{l}\phantom{250)}0\phantom{3}\\250\overline{)259}\\\end{array}
Use the 2^{nd} digit 5 from dividend 259
\begin{array}{l}\phantom{250)}00\phantom{4}\\250\overline{)259}\\\end{array}
Since 25 is less than 250, use the next digit 9 from dividend 259 and add 0 to the quotient
\begin{array}{l}\phantom{250)}00\phantom{5}\\250\overline{)259}\\\end{array}
Use the 3^{rd} digit 9 from dividend 259
\begin{array}{l}\phantom{250)}001\phantom{6}\\250\overline{)259}\\\phantom{250)}\underline{\phantom{}250\phantom{}}\\\phantom{250)99}9\\\end{array}
Find closest multiple of 250 to 259. We see that 1 \times 250 = 250 is the nearest. Now subtract 250 from 259 to get reminder 9. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }9
Since 9 is less than 250, stop the division. The reminder is 9. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}