Evaluate
\frac{8}{3}\approx 2.666666667
Factor
\frac{2 ^ {3}}{3} = 2\frac{2}{3} = 2.6666666666666665
Share
Copied to clipboard
\begin{array}{l}\phantom{96)}\phantom{1}\\96\overline{)256}\\\end{array}
Use the 1^{st} digit 2 from dividend 256
\begin{array}{l}\phantom{96)}0\phantom{2}\\96\overline{)256}\\\end{array}
Since 2 is less than 96, use the next digit 5 from dividend 256 and add 0 to the quotient
\begin{array}{l}\phantom{96)}0\phantom{3}\\96\overline{)256}\\\end{array}
Use the 2^{nd} digit 5 from dividend 256
\begin{array}{l}\phantom{96)}00\phantom{4}\\96\overline{)256}\\\end{array}
Since 25 is less than 96, use the next digit 6 from dividend 256 and add 0 to the quotient
\begin{array}{l}\phantom{96)}00\phantom{5}\\96\overline{)256}\\\end{array}
Use the 3^{rd} digit 6 from dividend 256
\begin{array}{l}\phantom{96)}002\phantom{6}\\96\overline{)256}\\\phantom{96)}\underline{\phantom{}192\phantom{}}\\\phantom{96)9}64\\\end{array}
Find closest multiple of 96 to 256. We see that 2 \times 96 = 192 is the nearest. Now subtract 192 from 256 to get reminder 64. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }64
Since 64 is less than 96, stop the division. The reminder is 64. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}