Evaluate
8
Factor
2^{3}
Share
Copied to clipboard
\begin{array}{l}\phantom{32)}\phantom{1}\\32\overline{)256}\\\end{array}
Use the 1^{st} digit 2 from dividend 256
\begin{array}{l}\phantom{32)}0\phantom{2}\\32\overline{)256}\\\end{array}
Since 2 is less than 32, use the next digit 5 from dividend 256 and add 0 to the quotient
\begin{array}{l}\phantom{32)}0\phantom{3}\\32\overline{)256}\\\end{array}
Use the 2^{nd} digit 5 from dividend 256
\begin{array}{l}\phantom{32)}00\phantom{4}\\32\overline{)256}\\\end{array}
Since 25 is less than 32, use the next digit 6 from dividend 256 and add 0 to the quotient
\begin{array}{l}\phantom{32)}00\phantom{5}\\32\overline{)256}\\\end{array}
Use the 3^{rd} digit 6 from dividend 256
\begin{array}{l}\phantom{32)}008\phantom{6}\\32\overline{)256}\\\phantom{32)}\underline{\phantom{}256\phantom{}}\\\phantom{32)999}0\\\end{array}
Find closest multiple of 32 to 256. We see that 8 \times 32 = 256 is the nearest. Now subtract 256 from 256 to get reminder 0. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }0
Since 0 is less than 32, stop the division. The reminder is 0. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}