Evaluate
\frac{255}{58}\approx 4.396551724
Factor
\frac{3 \cdot 5 \cdot 17}{2 \cdot 29} = 4\frac{23}{58} = 4.396551724137931
Share
Copied to clipboard
\begin{array}{l}\phantom{58)}\phantom{1}\\58\overline{)255}\\\end{array}
Use the 1^{st} digit 2 from dividend 255
\begin{array}{l}\phantom{58)}0\phantom{2}\\58\overline{)255}\\\end{array}
Since 2 is less than 58, use the next digit 5 from dividend 255 and add 0 to the quotient
\begin{array}{l}\phantom{58)}0\phantom{3}\\58\overline{)255}\\\end{array}
Use the 2^{nd} digit 5 from dividend 255
\begin{array}{l}\phantom{58)}00\phantom{4}\\58\overline{)255}\\\end{array}
Since 25 is less than 58, use the next digit 5 from dividend 255 and add 0 to the quotient
\begin{array}{l}\phantom{58)}00\phantom{5}\\58\overline{)255}\\\end{array}
Use the 3^{rd} digit 5 from dividend 255
\begin{array}{l}\phantom{58)}004\phantom{6}\\58\overline{)255}\\\phantom{58)}\underline{\phantom{}232\phantom{}}\\\phantom{58)9}23\\\end{array}
Find closest multiple of 58 to 255. We see that 4 \times 58 = 232 is the nearest. Now subtract 232 from 255 to get reminder 23. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }23
Since 23 is less than 58, stop the division. The reminder is 23. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}