Evaluate
\frac{255}{38}\approx 6.710526316
Factor
\frac{3 \cdot 5 \cdot 17}{2 \cdot 19} = 6\frac{27}{38} = 6.7105263157894735
Share
Copied to clipboard
\begin{array}{l}\phantom{38)}\phantom{1}\\38\overline{)255}\\\end{array}
Use the 1^{st} digit 2 from dividend 255
\begin{array}{l}\phantom{38)}0\phantom{2}\\38\overline{)255}\\\end{array}
Since 2 is less than 38, use the next digit 5 from dividend 255 and add 0 to the quotient
\begin{array}{l}\phantom{38)}0\phantom{3}\\38\overline{)255}\\\end{array}
Use the 2^{nd} digit 5 from dividend 255
\begin{array}{l}\phantom{38)}00\phantom{4}\\38\overline{)255}\\\end{array}
Since 25 is less than 38, use the next digit 5 from dividend 255 and add 0 to the quotient
\begin{array}{l}\phantom{38)}00\phantom{5}\\38\overline{)255}\\\end{array}
Use the 3^{rd} digit 5 from dividend 255
\begin{array}{l}\phantom{38)}006\phantom{6}\\38\overline{)255}\\\phantom{38)}\underline{\phantom{}228\phantom{}}\\\phantom{38)9}27\\\end{array}
Find closest multiple of 38 to 255. We see that 6 \times 38 = 228 is the nearest. Now subtract 228 from 255 to get reminder 27. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }27
Since 27 is less than 38, stop the division. The reminder is 27. The topmost line 006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}