Evaluate
\frac{2545}{422}\approx 6.030805687
Factor
\frac{5 \cdot 509}{2 \cdot 211} = 6\frac{13}{422} = 6.030805687203792
Share
Copied to clipboard
\begin{array}{l}\phantom{422)}\phantom{1}\\422\overline{)2545}\\\end{array}
Use the 1^{st} digit 2 from dividend 2545
\begin{array}{l}\phantom{422)}0\phantom{2}\\422\overline{)2545}\\\end{array}
Since 2 is less than 422, use the next digit 5 from dividend 2545 and add 0 to the quotient
\begin{array}{l}\phantom{422)}0\phantom{3}\\422\overline{)2545}\\\end{array}
Use the 2^{nd} digit 5 from dividend 2545
\begin{array}{l}\phantom{422)}00\phantom{4}\\422\overline{)2545}\\\end{array}
Since 25 is less than 422, use the next digit 4 from dividend 2545 and add 0 to the quotient
\begin{array}{l}\phantom{422)}00\phantom{5}\\422\overline{)2545}\\\end{array}
Use the 3^{rd} digit 4 from dividend 2545
\begin{array}{l}\phantom{422)}000\phantom{6}\\422\overline{)2545}\\\end{array}
Since 254 is less than 422, use the next digit 5 from dividend 2545 and add 0 to the quotient
\begin{array}{l}\phantom{422)}000\phantom{7}\\422\overline{)2545}\\\end{array}
Use the 4^{th} digit 5 from dividend 2545
\begin{array}{l}\phantom{422)}0006\phantom{8}\\422\overline{)2545}\\\phantom{422)}\underline{\phantom{}2532\phantom{}}\\\phantom{422)99}13\\\end{array}
Find closest multiple of 422 to 2545. We see that 6 \times 422 = 2532 is the nearest. Now subtract 2532 from 2545 to get reminder 13. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }13
Since 13 is less than 422, stop the division. The reminder is 13. The topmost line 0006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}