Evaluate
\frac{251}{40}=6.275
Factor
\frac{251}{2 ^ {3} \cdot 5} = 6\frac{11}{40} = 6.275
Share
Copied to clipboard
\begin{array}{l}\phantom{40)}\phantom{1}\\40\overline{)251}\\\end{array}
Use the 1^{st} digit 2 from dividend 251
\begin{array}{l}\phantom{40)}0\phantom{2}\\40\overline{)251}\\\end{array}
Since 2 is less than 40, use the next digit 5 from dividend 251 and add 0 to the quotient
\begin{array}{l}\phantom{40)}0\phantom{3}\\40\overline{)251}\\\end{array}
Use the 2^{nd} digit 5 from dividend 251
\begin{array}{l}\phantom{40)}00\phantom{4}\\40\overline{)251}\\\end{array}
Since 25 is less than 40, use the next digit 1 from dividend 251 and add 0 to the quotient
\begin{array}{l}\phantom{40)}00\phantom{5}\\40\overline{)251}\\\end{array}
Use the 3^{rd} digit 1 from dividend 251
\begin{array}{l}\phantom{40)}006\phantom{6}\\40\overline{)251}\\\phantom{40)}\underline{\phantom{}240\phantom{}}\\\phantom{40)9}11\\\end{array}
Find closest multiple of 40 to 251. We see that 6 \times 40 = 240 is the nearest. Now subtract 240 from 251 to get reminder 11. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }11
Since 11 is less than 40, stop the division. The reminder is 11. The topmost line 006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}