Solve for x
x=\frac{2}{3}\approx 0.666666667
Graph
Share
Copied to clipboard
4x\times \frac{25}{4}+4\times 16=121x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4x, the least common multiple of 4,x.
25x+4\times 16=121x
Cancel out 4 and 4.
25x+64=121x
Multiply 4 and 16 to get 64.
25x+64-121x=0
Subtract 121x from both sides.
-96x+64=0
Combine 25x and -121x to get -96x.
-96x=-64
Subtract 64 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-64}{-96}
Divide both sides by -96.
x=\frac{2}{3}
Reduce the fraction \frac{-64}{-96} to lowest terms by extracting and canceling out -32.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}