Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

1125a^{2}+1000a+48\times 25=405a^{2}+10125-90\times 45a
Multiply both sides of the equation by 720, the least common multiple of 16,18,15,8.
1125a^{2}+1000a+1200=405a^{2}+10125-90\times 45a
Multiply 48 and 25 to get 1200.
1125a^{2}+1000a+1200=405a^{2}+10125-4050a
Multiply -90 and 45 to get -4050.
1125a^{2}+1000a+1200-405a^{2}=10125-4050a
Subtract 405a^{2} from both sides.
720a^{2}+1000a+1200=10125-4050a
Combine 1125a^{2} and -405a^{2} to get 720a^{2}.
720a^{2}+1000a+1200-10125=-4050a
Subtract 10125 from both sides.
720a^{2}+1000a-8925=-4050a
Subtract 10125 from 1200 to get -8925.
720a^{2}+1000a-8925+4050a=0
Add 4050a to both sides.
720a^{2}+5050a-8925=0
Combine 1000a and 4050a to get 5050a.
a=\frac{-5050±\sqrt{5050^{2}-4\times 720\left(-8925\right)}}{2\times 720}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 720 for a, 5050 for b, and -8925 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-5050±\sqrt{25502500-4\times 720\left(-8925\right)}}{2\times 720}
Square 5050.
a=\frac{-5050±\sqrt{25502500-2880\left(-8925\right)}}{2\times 720}
Multiply -4 times 720.
a=\frac{-5050±\sqrt{25502500+25704000}}{2\times 720}
Multiply -2880 times -8925.
a=\frac{-5050±\sqrt{51206500}}{2\times 720}
Add 25502500 to 25704000.
a=\frac{-5050±10\sqrt{512065}}{2\times 720}
Take the square root of 51206500.
a=\frac{-5050±10\sqrt{512065}}{1440}
Multiply 2 times 720.
a=\frac{10\sqrt{512065}-5050}{1440}
Now solve the equation a=\frac{-5050±10\sqrt{512065}}{1440} when ± is plus. Add -5050 to 10\sqrt{512065}.
a=\frac{\sqrt{512065}-505}{144}
Divide -5050+10\sqrt{512065} by 1440.
a=\frac{-10\sqrt{512065}-5050}{1440}
Now solve the equation a=\frac{-5050±10\sqrt{512065}}{1440} when ± is minus. Subtract 10\sqrt{512065} from -5050.
a=\frac{-\sqrt{512065}-505}{144}
Divide -5050-10\sqrt{512065} by 1440.
a=\frac{\sqrt{512065}-505}{144} a=\frac{-\sqrt{512065}-505}{144}
The equation is now solved.
1125a^{2}+1000a+48\times 25=405a^{2}+10125-90\times 45a
Multiply both sides of the equation by 720, the least common multiple of 16,18,15,8.
1125a^{2}+1000a+1200=405a^{2}+10125-90\times 45a
Multiply 48 and 25 to get 1200.
1125a^{2}+1000a+1200=405a^{2}+10125-4050a
Multiply -90 and 45 to get -4050.
1125a^{2}+1000a+1200-405a^{2}=10125-4050a
Subtract 405a^{2} from both sides.
720a^{2}+1000a+1200=10125-4050a
Combine 1125a^{2} and -405a^{2} to get 720a^{2}.
720a^{2}+1000a+1200+4050a=10125
Add 4050a to both sides.
720a^{2}+5050a+1200=10125
Combine 1000a and 4050a to get 5050a.
720a^{2}+5050a=10125-1200
Subtract 1200 from both sides.
720a^{2}+5050a=8925
Subtract 1200 from 10125 to get 8925.
\frac{720a^{2}+5050a}{720}=\frac{8925}{720}
Divide both sides by 720.
a^{2}+\frac{5050}{720}a=\frac{8925}{720}
Dividing by 720 undoes the multiplication by 720.
a^{2}+\frac{505}{72}a=\frac{8925}{720}
Reduce the fraction \frac{5050}{720} to lowest terms by extracting and canceling out 10.
a^{2}+\frac{505}{72}a=\frac{595}{48}
Reduce the fraction \frac{8925}{720} to lowest terms by extracting and canceling out 15.
a^{2}+\frac{505}{72}a+\left(\frac{505}{144}\right)^{2}=\frac{595}{48}+\left(\frac{505}{144}\right)^{2}
Divide \frac{505}{72}, the coefficient of the x term, by 2 to get \frac{505}{144}. Then add the square of \frac{505}{144} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+\frac{505}{72}a+\frac{255025}{20736}=\frac{595}{48}+\frac{255025}{20736}
Square \frac{505}{144} by squaring both the numerator and the denominator of the fraction.
a^{2}+\frac{505}{72}a+\frac{255025}{20736}=\frac{512065}{20736}
Add \frac{595}{48} to \frac{255025}{20736} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a+\frac{505}{144}\right)^{2}=\frac{512065}{20736}
Factor a^{2}+\frac{505}{72}a+\frac{255025}{20736}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{505}{144}\right)^{2}}=\sqrt{\frac{512065}{20736}}
Take the square root of both sides of the equation.
a+\frac{505}{144}=\frac{\sqrt{512065}}{144} a+\frac{505}{144}=-\frac{\sqrt{512065}}{144}
Simplify.
a=\frac{\sqrt{512065}-505}{144} a=\frac{-\sqrt{512065}-505}{144}
Subtract \frac{505}{144} from both sides of the equation.