Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2x-3\right)\left(24x-18\right)-\left(3x-2\right)\left(8x-10\right)=2\left(2x-3\right)\left(3x-2\right)
Variable x cannot be equal to any of the values \frac{2}{3},\frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x-3\right)\left(3x-2\right), the least common multiple of 3x-2,2x-3.
48x^{2}-108x+54-\left(3x-2\right)\left(8x-10\right)=2\left(2x-3\right)\left(3x-2\right)
Use the distributive property to multiply 2x-3 by 24x-18 and combine like terms.
48x^{2}-108x+54-\left(24x^{2}-46x+20\right)=2\left(2x-3\right)\left(3x-2\right)
Use the distributive property to multiply 3x-2 by 8x-10 and combine like terms.
48x^{2}-108x+54-24x^{2}+46x-20=2\left(2x-3\right)\left(3x-2\right)
To find the opposite of 24x^{2}-46x+20, find the opposite of each term.
24x^{2}-108x+54+46x-20=2\left(2x-3\right)\left(3x-2\right)
Combine 48x^{2} and -24x^{2} to get 24x^{2}.
24x^{2}-62x+54-20=2\left(2x-3\right)\left(3x-2\right)
Combine -108x and 46x to get -62x.
24x^{2}-62x+34=2\left(2x-3\right)\left(3x-2\right)
Subtract 20 from 54 to get 34.
24x^{2}-62x+34=\left(4x-6\right)\left(3x-2\right)
Use the distributive property to multiply 2 by 2x-3.
24x^{2}-62x+34=12x^{2}-26x+12
Use the distributive property to multiply 4x-6 by 3x-2 and combine like terms.
24x^{2}-62x+34-12x^{2}=-26x+12
Subtract 12x^{2} from both sides.
12x^{2}-62x+34=-26x+12
Combine 24x^{2} and -12x^{2} to get 12x^{2}.
12x^{2}-62x+34+26x=12
Add 26x to both sides.
12x^{2}-36x+34=12
Combine -62x and 26x to get -36x.
12x^{2}-36x+34-12=0
Subtract 12 from both sides.
12x^{2}-36x+22=0
Subtract 12 from 34 to get 22.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 12\times 22}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, -36 for b, and 22 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-36\right)±\sqrt{1296-4\times 12\times 22}}{2\times 12}
Square -36.
x=\frac{-\left(-36\right)±\sqrt{1296-48\times 22}}{2\times 12}
Multiply -4 times 12.
x=\frac{-\left(-36\right)±\sqrt{1296-1056}}{2\times 12}
Multiply -48 times 22.
x=\frac{-\left(-36\right)±\sqrt{240}}{2\times 12}
Add 1296 to -1056.
x=\frac{-\left(-36\right)±4\sqrt{15}}{2\times 12}
Take the square root of 240.
x=\frac{36±4\sqrt{15}}{2\times 12}
The opposite of -36 is 36.
x=\frac{36±4\sqrt{15}}{24}
Multiply 2 times 12.
x=\frac{4\sqrt{15}+36}{24}
Now solve the equation x=\frac{36±4\sqrt{15}}{24} when ± is plus. Add 36 to 4\sqrt{15}.
x=\frac{\sqrt{15}}{6}+\frac{3}{2}
Divide 36+4\sqrt{15} by 24.
x=\frac{36-4\sqrt{15}}{24}
Now solve the equation x=\frac{36±4\sqrt{15}}{24} when ± is minus. Subtract 4\sqrt{15} from 36.
x=-\frac{\sqrt{15}}{6}+\frac{3}{2}
Divide 36-4\sqrt{15} by 24.
x=\frac{\sqrt{15}}{6}+\frac{3}{2} x=-\frac{\sqrt{15}}{6}+\frac{3}{2}
The equation is now solved.
\left(2x-3\right)\left(24x-18\right)-\left(3x-2\right)\left(8x-10\right)=2\left(2x-3\right)\left(3x-2\right)
Variable x cannot be equal to any of the values \frac{2}{3},\frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x-3\right)\left(3x-2\right), the least common multiple of 3x-2,2x-3.
48x^{2}-108x+54-\left(3x-2\right)\left(8x-10\right)=2\left(2x-3\right)\left(3x-2\right)
Use the distributive property to multiply 2x-3 by 24x-18 and combine like terms.
48x^{2}-108x+54-\left(24x^{2}-46x+20\right)=2\left(2x-3\right)\left(3x-2\right)
Use the distributive property to multiply 3x-2 by 8x-10 and combine like terms.
48x^{2}-108x+54-24x^{2}+46x-20=2\left(2x-3\right)\left(3x-2\right)
To find the opposite of 24x^{2}-46x+20, find the opposite of each term.
24x^{2}-108x+54+46x-20=2\left(2x-3\right)\left(3x-2\right)
Combine 48x^{2} and -24x^{2} to get 24x^{2}.
24x^{2}-62x+54-20=2\left(2x-3\right)\left(3x-2\right)
Combine -108x and 46x to get -62x.
24x^{2}-62x+34=2\left(2x-3\right)\left(3x-2\right)
Subtract 20 from 54 to get 34.
24x^{2}-62x+34=\left(4x-6\right)\left(3x-2\right)
Use the distributive property to multiply 2 by 2x-3.
24x^{2}-62x+34=12x^{2}-26x+12
Use the distributive property to multiply 4x-6 by 3x-2 and combine like terms.
24x^{2}-62x+34-12x^{2}=-26x+12
Subtract 12x^{2} from both sides.
12x^{2}-62x+34=-26x+12
Combine 24x^{2} and -12x^{2} to get 12x^{2}.
12x^{2}-62x+34+26x=12
Add 26x to both sides.
12x^{2}-36x+34=12
Combine -62x and 26x to get -36x.
12x^{2}-36x=12-34
Subtract 34 from both sides.
12x^{2}-36x=-22
Subtract 34 from 12 to get -22.
\frac{12x^{2}-36x}{12}=-\frac{22}{12}
Divide both sides by 12.
x^{2}+\left(-\frac{36}{12}\right)x=-\frac{22}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}-3x=-\frac{22}{12}
Divide -36 by 12.
x^{2}-3x=-\frac{11}{6}
Reduce the fraction \frac{-22}{12} to lowest terms by extracting and canceling out 2.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-\frac{11}{6}+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=-\frac{11}{6}+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{5}{12}
Add -\frac{11}{6} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{2}\right)^{2}=\frac{5}{12}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{5}{12}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{15}}{6} x-\frac{3}{2}=-\frac{\sqrt{15}}{6}
Simplify.
x=\frac{\sqrt{15}}{6}+\frac{3}{2} x=-\frac{\sqrt{15}}{6}+\frac{3}{2}
Add \frac{3}{2} to both sides of the equation.