Evaluate
\frac{14062500}{7}\approx 2008928.571428571
Factor
\frac{2 ^ {2} \cdot 3 ^ {2} \cdot 5 ^ {8}}{7} = 2008928\frac{4}{7} = 2008928.5714285714
Share
Copied to clipboard
\frac{24000000}{112}+\frac{310000}{1.12}+\frac{350000}{1.12}+\frac{410000}{1.12}+\frac{430000}{1.12}+\frac{510000}{1.12}
Expand \frac{240000}{1.12} by multiplying both numerator and the denominator by 100.
\frac{1500000}{7}+\frac{310000}{1.12}+\frac{350000}{1.12}+\frac{410000}{1.12}+\frac{430000}{1.12}+\frac{510000}{1.12}
Reduce the fraction \frac{24000000}{112} to lowest terms by extracting and canceling out 16.
\frac{1500000}{7}+\frac{31000000}{112}+\frac{350000}{1.12}+\frac{410000}{1.12}+\frac{430000}{1.12}+\frac{510000}{1.12}
Expand \frac{310000}{1.12} by multiplying both numerator and the denominator by 100.
\frac{1500000}{7}+\frac{1937500}{7}+\frac{350000}{1.12}+\frac{410000}{1.12}+\frac{430000}{1.12}+\frac{510000}{1.12}
Reduce the fraction \frac{31000000}{112} to lowest terms by extracting and canceling out 16.
\frac{1500000+1937500}{7}+\frac{350000}{1.12}+\frac{410000}{1.12}+\frac{430000}{1.12}+\frac{510000}{1.12}
Since \frac{1500000}{7} and \frac{1937500}{7} have the same denominator, add them by adding their numerators.
\frac{3437500}{7}+\frac{350000}{1.12}+\frac{410000}{1.12}+\frac{430000}{1.12}+\frac{510000}{1.12}
Add 1500000 and 1937500 to get 3437500.
\frac{3437500}{7}+\frac{35000000}{112}+\frac{410000}{1.12}+\frac{430000}{1.12}+\frac{510000}{1.12}
Expand \frac{350000}{1.12} by multiplying both numerator and the denominator by 100.
\frac{3437500}{7}+312500+\frac{410000}{1.12}+\frac{430000}{1.12}+\frac{510000}{1.12}
Divide 35000000 by 112 to get 312500.
\frac{3437500}{7}+\frac{2187500}{7}+\frac{410000}{1.12}+\frac{430000}{1.12}+\frac{510000}{1.12}
Convert 312500 to fraction \frac{2187500}{7}.
\frac{3437500+2187500}{7}+\frac{410000}{1.12}+\frac{430000}{1.12}+\frac{510000}{1.12}
Since \frac{3437500}{7} and \frac{2187500}{7} have the same denominator, add them by adding their numerators.
\frac{5625000}{7}+\frac{410000}{1.12}+\frac{430000}{1.12}+\frac{510000}{1.12}
Add 3437500 and 2187500 to get 5625000.
\frac{5625000}{7}+\frac{41000000}{112}+\frac{430000}{1.12}+\frac{510000}{1.12}
Expand \frac{410000}{1.12} by multiplying both numerator and the denominator by 100.
\frac{5625000}{7}+\frac{2562500}{7}+\frac{430000}{1.12}+\frac{510000}{1.12}
Reduce the fraction \frac{41000000}{112} to lowest terms by extracting and canceling out 16.
\frac{5625000+2562500}{7}+\frac{430000}{1.12}+\frac{510000}{1.12}
Since \frac{5625000}{7} and \frac{2562500}{7} have the same denominator, add them by adding their numerators.
\frac{8187500}{7}+\frac{430000}{1.12}+\frac{510000}{1.12}
Add 5625000 and 2562500 to get 8187500.
\frac{8187500}{7}+\frac{43000000}{112}+\frac{510000}{1.12}
Expand \frac{430000}{1.12} by multiplying both numerator and the denominator by 100.
\frac{8187500}{7}+\frac{2687500}{7}+\frac{510000}{1.12}
Reduce the fraction \frac{43000000}{112} to lowest terms by extracting and canceling out 16.
\frac{8187500+2687500}{7}+\frac{510000}{1.12}
Since \frac{8187500}{7} and \frac{2687500}{7} have the same denominator, add them by adding their numerators.
\frac{10875000}{7}+\frac{510000}{1.12}
Add 8187500 and 2687500 to get 10875000.
\frac{10875000}{7}+\frac{51000000}{112}
Expand \frac{510000}{1.12} by multiplying both numerator and the denominator by 100.
\frac{10875000}{7}+\frac{3187500}{7}
Reduce the fraction \frac{51000000}{112} to lowest terms by extracting and canceling out 16.
\frac{10875000+3187500}{7}
Since \frac{10875000}{7} and \frac{3187500}{7} have the same denominator, add them by adding their numerators.
\frac{14062500}{7}
Add 10875000 and 3187500 to get 14062500.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}