Solve for x
x=-10
x=12
Graph
Share
Copied to clipboard
x\times 240-\left(x-2\right)\times 240=4x\left(x-2\right)
Variable x cannot be equal to any of the values 0,2 since division by zero is not defined. Multiply both sides of the equation by x\left(x-2\right), the least common multiple of x-2,x.
x\times 240-\left(240x-480\right)=4x\left(x-2\right)
Use the distributive property to multiply x-2 by 240.
x\times 240-240x+480=4x\left(x-2\right)
To find the opposite of 240x-480, find the opposite of each term.
480=4x\left(x-2\right)
Combine x\times 240 and -240x to get 0.
480=4x^{2}-8x
Use the distributive property to multiply 4x by x-2.
4x^{2}-8x=480
Swap sides so that all variable terms are on the left hand side.
4x^{2}-8x-480=0
Subtract 480 from both sides.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 4\left(-480\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -8 for b, and -480 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 4\left(-480\right)}}{2\times 4}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-16\left(-480\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-8\right)±\sqrt{64+7680}}{2\times 4}
Multiply -16 times -480.
x=\frac{-\left(-8\right)±\sqrt{7744}}{2\times 4}
Add 64 to 7680.
x=\frac{-\left(-8\right)±88}{2\times 4}
Take the square root of 7744.
x=\frac{8±88}{2\times 4}
The opposite of -8 is 8.
x=\frac{8±88}{8}
Multiply 2 times 4.
x=\frac{96}{8}
Now solve the equation x=\frac{8±88}{8} when ± is plus. Add 8 to 88.
x=12
Divide 96 by 8.
x=-\frac{80}{8}
Now solve the equation x=\frac{8±88}{8} when ± is minus. Subtract 88 from 8.
x=-10
Divide -80 by 8.
x=12 x=-10
The equation is now solved.
x\times 240-\left(x-2\right)\times 240=4x\left(x-2\right)
Variable x cannot be equal to any of the values 0,2 since division by zero is not defined. Multiply both sides of the equation by x\left(x-2\right), the least common multiple of x-2,x.
x\times 240-\left(240x-480\right)=4x\left(x-2\right)
Use the distributive property to multiply x-2 by 240.
x\times 240-240x+480=4x\left(x-2\right)
To find the opposite of 240x-480, find the opposite of each term.
480=4x\left(x-2\right)
Combine x\times 240 and -240x to get 0.
480=4x^{2}-8x
Use the distributive property to multiply 4x by x-2.
4x^{2}-8x=480
Swap sides so that all variable terms are on the left hand side.
\frac{4x^{2}-8x}{4}=\frac{480}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{8}{4}\right)x=\frac{480}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-2x=\frac{480}{4}
Divide -8 by 4.
x^{2}-2x=120
Divide 480 by 4.
x^{2}-2x+1=120+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=121
Add 120 to 1.
\left(x-1\right)^{2}=121
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{121}
Take the square root of both sides of the equation.
x-1=11 x-1=-11
Simplify.
x=12 x=-10
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}