Evaluate
\frac{48}{7\left(1+\sqrt{3}i\right)}\approx 1.714285714-2.969229956i
Real Part
240Re(\frac{1}{35\left(1+\sqrt{3}i\right)})
Share
Copied to clipboard
\frac{240}{35+25i\sqrt{3}+i\sqrt{300}}
Add 25 and 10 to get 35.
\frac{240}{35+25i\sqrt{3}+i\times 10\sqrt{3}}
Factor 300=10^{2}\times 3. Rewrite the square root of the product \sqrt{10^{2}\times 3} as the product of square roots \sqrt{10^{2}}\sqrt{3}. Take the square root of 10^{2}.
\frac{240}{35+35i\sqrt{3}}
Combine 25i\sqrt{3} and 10i\sqrt{3} to get 35i\sqrt{3}.
\frac{240\left(35-35i\sqrt{3}\right)}{\left(35+35i\sqrt{3}\right)\left(35-35i\sqrt{3}\right)}
Rationalize the denominator of \frac{240}{35+35i\sqrt{3}} by multiplying numerator and denominator by 35-35i\sqrt{3}.
\frac{240\left(35-35i\sqrt{3}\right)}{35^{2}-\left(35i\sqrt{3}\right)^{2}}
Consider \left(35+35i\sqrt{3}\right)\left(35-35i\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{240\left(35-35i\sqrt{3}\right)}{1225-\left(35i\sqrt{3}\right)^{2}}
Calculate 35 to the power of 2 and get 1225.
\frac{240\left(35-35i\sqrt{3}\right)}{1225-\left(35i\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(35i\sqrt{3}\right)^{2}.
\frac{240\left(35-35i\sqrt{3}\right)}{1225-\left(-1225\left(\sqrt{3}\right)^{2}\right)}
Calculate 35i to the power of 2 and get -1225.
\frac{240\left(35-35i\sqrt{3}\right)}{1225-\left(-1225\times 3\right)}
The square of \sqrt{3} is 3.
\frac{240\left(35-35i\sqrt{3}\right)}{1225-\left(-3675\right)}
Multiply -1225 and 3 to get -3675.
\frac{240\left(35-35i\sqrt{3}\right)}{1225+3675}
Multiply -1 and -3675 to get 3675.
\frac{240\left(35-35i\sqrt{3}\right)}{4900}
Add 1225 and 3675 to get 4900.
\frac{12}{245}\left(35-35i\sqrt{3}\right)
Divide 240\left(35-35i\sqrt{3}\right) by 4900 to get \frac{12}{245}\left(35-35i\sqrt{3}\right).
\frac{12}{245}\times 35+\frac{12}{245}\times \left(-35i\right)\sqrt{3}
Use the distributive property to multiply \frac{12}{245} by 35-35i\sqrt{3}.
\frac{12\times 35}{245}+\frac{12}{245}\times \left(-35i\right)\sqrt{3}
Express \frac{12}{245}\times 35 as a single fraction.
\frac{420}{245}+\frac{12}{245}\times \left(-35i\right)\sqrt{3}
Multiply 12 and 35 to get 420.
\frac{12}{7}+\frac{12}{245}\times \left(-35i\right)\sqrt{3}
Reduce the fraction \frac{420}{245} to lowest terms by extracting and canceling out 35.
\frac{12}{7}-\frac{12}{7}i\sqrt{3}
Multiply \frac{12}{245} and -35i to get -\frac{12}{7}i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}