Evaluate
\frac{2\times 240}{25+i\times 25\sqrt{3}}\approx 4.8-8.313843876i
Real Part
240Re(\frac{2}{25+i\times 25\sqrt{3}})
Share
Copied to clipboard
\frac{240}{12.5+2.5i\sqrt{3}+i\sqrt{300}}
Add 2.5 and 10 to get 12.5.
\frac{240}{12.5+2.5i\sqrt{3}+i\times 10\sqrt{3}}
Factor 300=10^{2}\times 3. Rewrite the square root of the product \sqrt{10^{2}\times 3} as the product of square roots \sqrt{10^{2}}\sqrt{3}. Take the square root of 10^{2}.
\frac{240}{12.5+12.5i\sqrt{3}}
Combine 2.5i\sqrt{3} and 10i\sqrt{3} to get 12.5i\sqrt{3}.
\frac{240\left(12.5-12.5i\sqrt{3}\right)}{\left(12.5+12.5i\sqrt{3}\right)\left(12.5-12.5i\sqrt{3}\right)}
Rationalize the denominator of \frac{240}{12.5+12.5i\sqrt{3}} by multiplying numerator and denominator by 12.5-12.5i\sqrt{3}.
\frac{240\left(12.5-12.5i\sqrt{3}\right)}{12.5^{2}-\left(12.5i\sqrt{3}\right)^{2}}
Consider \left(12.5+12.5i\sqrt{3}\right)\left(12.5-12.5i\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{240\left(12.5-12.5i\sqrt{3}\right)}{156.25-\left(12.5i\sqrt{3}\right)^{2}}
Calculate 12.5 to the power of 2 and get 156.25.
\frac{240\left(12.5-12.5i\sqrt{3}\right)}{156.25-\left(12.5i\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(12.5i\sqrt{3}\right)^{2}.
\frac{240\left(12.5-12.5i\sqrt{3}\right)}{156.25-\left(-156.25\left(\sqrt{3}\right)^{2}\right)}
Calculate 12.5i to the power of 2 and get -156.25.
\frac{240\left(12.5-12.5i\sqrt{3}\right)}{156.25-\left(-156.25\times 3\right)}
The square of \sqrt{3} is 3.
\frac{240\left(12.5-12.5i\sqrt{3}\right)}{156.25-\left(-468.75\right)}
Multiply -156.25 and 3 to get -468.75.
\frac{240\left(12.5-12.5i\sqrt{3}\right)}{156.25+468.75}
Multiply -1 and -468.75 to get 468.75.
\frac{240\left(12.5-12.5i\sqrt{3}\right)}{625}
Add 156.25 and 468.75 to get 625.
\frac{48}{125}\left(12.5-12.5i\sqrt{3}\right)
Divide 240\left(12.5-12.5i\sqrt{3}\right) by 625 to get \frac{48}{125}\left(12.5-12.5i\sqrt{3}\right).
\frac{48}{125}\times 12.5+\frac{48}{125}\times \left(-12.5i\right)\sqrt{3}
Use the distributive property to multiply \frac{48}{125} by 12.5-12.5i\sqrt{3}.
\frac{48}{125}\times \frac{25}{2}+\frac{48}{125}\times \left(-12.5i\right)\sqrt{3}
Convert decimal number 12.5 to fraction \frac{125}{10}. Reduce the fraction \frac{125}{10} to lowest terms by extracting and canceling out 5.
\frac{48\times 25}{125\times 2}+\frac{48}{125}\times \left(-12.5i\right)\sqrt{3}
Multiply \frac{48}{125} times \frac{25}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1200}{250}+\frac{48}{125}\times \left(-12.5i\right)\sqrt{3}
Do the multiplications in the fraction \frac{48\times 25}{125\times 2}.
\frac{24}{5}+\frac{48}{125}\times \left(-12.5i\right)\sqrt{3}
Reduce the fraction \frac{1200}{250} to lowest terms by extracting and canceling out 50.
\frac{24}{5}-\frac{24}{5}i\sqrt{3}
Multiply \frac{48}{125} and -12.5i to get -\frac{24}{5}i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}