Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{240}{12.5+2.5i\sqrt{3}+i\sqrt{300}}
Add 2.5 and 10 to get 12.5.
\frac{240}{12.5+2.5i\sqrt{3}+i\times 10\sqrt{3}}
Factor 300=10^{2}\times 3. Rewrite the square root of the product \sqrt{10^{2}\times 3} as the product of square roots \sqrt{10^{2}}\sqrt{3}. Take the square root of 10^{2}.
\frac{240}{12.5+12.5i\sqrt{3}}
Combine 2.5i\sqrt{3} and 10i\sqrt{3} to get 12.5i\sqrt{3}.
\frac{240\left(12.5-12.5i\sqrt{3}\right)}{\left(12.5+12.5i\sqrt{3}\right)\left(12.5-12.5i\sqrt{3}\right)}
Rationalize the denominator of \frac{240}{12.5+12.5i\sqrt{3}} by multiplying numerator and denominator by 12.5-12.5i\sqrt{3}.
\frac{240\left(12.5-12.5i\sqrt{3}\right)}{12.5^{2}-\left(12.5i\sqrt{3}\right)^{2}}
Consider \left(12.5+12.5i\sqrt{3}\right)\left(12.5-12.5i\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{240\left(12.5-12.5i\sqrt{3}\right)}{156.25-\left(12.5i\sqrt{3}\right)^{2}}
Calculate 12.5 to the power of 2 and get 156.25.
\frac{240\left(12.5-12.5i\sqrt{3}\right)}{156.25-\left(12.5i\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(12.5i\sqrt{3}\right)^{2}.
\frac{240\left(12.5-12.5i\sqrt{3}\right)}{156.25-\left(-156.25\left(\sqrt{3}\right)^{2}\right)}
Calculate 12.5i to the power of 2 and get -156.25.
\frac{240\left(12.5-12.5i\sqrt{3}\right)}{156.25-\left(-156.25\times 3\right)}
The square of \sqrt{3} is 3.
\frac{240\left(12.5-12.5i\sqrt{3}\right)}{156.25-\left(-468.75\right)}
Multiply -156.25 and 3 to get -468.75.
\frac{240\left(12.5-12.5i\sqrt{3}\right)}{156.25+468.75}
Multiply -1 and -468.75 to get 468.75.
\frac{240\left(12.5-12.5i\sqrt{3}\right)}{625}
Add 156.25 and 468.75 to get 625.
\frac{48}{125}\left(12.5-12.5i\sqrt{3}\right)
Divide 240\left(12.5-12.5i\sqrt{3}\right) by 625 to get \frac{48}{125}\left(12.5-12.5i\sqrt{3}\right).
\frac{48}{125}\times 12.5+\frac{48}{125}\times \left(-12.5i\right)\sqrt{3}
Use the distributive property to multiply \frac{48}{125} by 12.5-12.5i\sqrt{3}.
\frac{48}{125}\times \frac{25}{2}+\frac{48}{125}\times \left(-12.5i\right)\sqrt{3}
Convert decimal number 12.5 to fraction \frac{125}{10}. Reduce the fraction \frac{125}{10} to lowest terms by extracting and canceling out 5.
\frac{48\times 25}{125\times 2}+\frac{48}{125}\times \left(-12.5i\right)\sqrt{3}
Multiply \frac{48}{125} times \frac{25}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1200}{250}+\frac{48}{125}\times \left(-12.5i\right)\sqrt{3}
Do the multiplications in the fraction \frac{48\times 25}{125\times 2}.
\frac{24}{5}+\frac{48}{125}\times \left(-12.5i\right)\sqrt{3}
Reduce the fraction \frac{1200}{250} to lowest terms by extracting and canceling out 50.
\frac{24}{5}-\frac{24}{5}i\sqrt{3}
Multiply \frac{48}{125} and -12.5i to get -\frac{24}{5}i.