Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Share

\frac{240\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1-2i.
\frac{240\left(1-2i\right)}{1^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{240\left(1-2i\right)}{5}
By definition, i^{2} is -1. Calculate the denominator.
\frac{240\times 1+240\times \left(-2i\right)}{5}
Multiply 240 times 1-2i.
\frac{240-480i}{5}
Do the multiplications in 240\times 1+240\times \left(-2i\right).
48-96i
Divide 240-480i by 5 to get 48-96i.
Re(\frac{240\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)})
Multiply both numerator and denominator of \frac{240}{1+2i} by the complex conjugate of the denominator, 1-2i.
Re(\frac{240\left(1-2i\right)}{1^{2}-2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{240\left(1-2i\right)}{5})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{240\times 1+240\times \left(-2i\right)}{5})
Multiply 240 times 1-2i.
Re(\frac{240-480i}{5})
Do the multiplications in 240\times 1+240\times \left(-2i\right).
Re(48-96i)
Divide 240-480i by 5 to get 48-96i.
48
The real part of 48-96i is 48.