Solve for x
x=\frac{4}{y}
y\neq 0
Solve for y
y=\frac{4}{x}
x\neq 0
Graph
Share
Copied to clipboard
2\left(24+3y^{2}\right)=12xy+6y^{2}
Multiply both sides of the equation by 4, the least common multiple of 2,4.
48+6y^{2}=12xy+6y^{2}
Use the distributive property to multiply 2 by 24+3y^{2}.
12xy+6y^{2}=48+6y^{2}
Swap sides so that all variable terms are on the left hand side.
12xy=48+6y^{2}-6y^{2}
Subtract 6y^{2} from both sides.
12xy=48
Combine 6y^{2} and -6y^{2} to get 0.
12yx=48
The equation is in standard form.
\frac{12yx}{12y}=\frac{48}{12y}
Divide both sides by 12y.
x=\frac{48}{12y}
Dividing by 12y undoes the multiplication by 12y.
x=\frac{4}{y}
Divide 48 by 12y.
2\left(24+3y^{2}\right)=12xy+6y^{2}
Multiply both sides of the equation by 4, the least common multiple of 2,4.
48+6y^{2}=12xy+6y^{2}
Use the distributive property to multiply 2 by 24+3y^{2}.
48+6y^{2}-12xy=6y^{2}
Subtract 12xy from both sides.
48+6y^{2}-12xy-6y^{2}=0
Subtract 6y^{2} from both sides.
48-12xy=0
Combine 6y^{2} and -6y^{2} to get 0.
-12xy=-48
Subtract 48 from both sides. Anything subtracted from zero gives its negation.
\left(-12x\right)y=-48
The equation is in standard form.
\frac{\left(-12x\right)y}{-12x}=-\frac{48}{-12x}
Divide both sides by -12x.
y=-\frac{48}{-12x}
Dividing by -12x undoes the multiplication by -12x.
y=\frac{4}{x}
Divide -48 by -12x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}