Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

24x^{2}=8\times 2
Multiply both sides by 2.
24x^{2}=16
Multiply 8 and 2 to get 16.
x^{2}=\frac{16}{24}
Divide both sides by 24.
x^{2}=\frac{2}{3}
Reduce the fraction \frac{16}{24} to lowest terms by extracting and canceling out 8.
x=\frac{\sqrt{6}}{3} x=-\frac{\sqrt{6}}{3}
Take the square root of both sides of the equation.
24x^{2}=8\times 2
Multiply both sides by 2.
24x^{2}=16
Multiply 8 and 2 to get 16.
24x^{2}-16=0
Subtract 16 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 24\left(-16\right)}}{2\times 24}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 24 for a, 0 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 24\left(-16\right)}}{2\times 24}
Square 0.
x=\frac{0±\sqrt{-96\left(-16\right)}}{2\times 24}
Multiply -4 times 24.
x=\frac{0±\sqrt{1536}}{2\times 24}
Multiply -96 times -16.
x=\frac{0±16\sqrt{6}}{2\times 24}
Take the square root of 1536.
x=\frac{0±16\sqrt{6}}{48}
Multiply 2 times 24.
x=\frac{\sqrt{6}}{3}
Now solve the equation x=\frac{0±16\sqrt{6}}{48} when ± is plus.
x=-\frac{\sqrt{6}}{3}
Now solve the equation x=\frac{0±16\sqrt{6}}{48} when ± is minus.
x=\frac{\sqrt{6}}{3} x=-\frac{\sqrt{6}}{3}
The equation is now solved.