Solve for x
x = -\frac{243}{122} = -1\frac{121}{122} \approx -1.991803279
Graph
Share
Copied to clipboard
5\times 24\left(x+2\right)+2\left(x+2\right)=1
Multiply both sides of the equation by 10, the least common multiple of 2,5,10.
120\left(x+2\right)+2\left(x+2\right)=1
Multiply 5 and 24 to get 120.
120x+240+2\left(x+2\right)=1
Use the distributive property to multiply 120 by x+2.
120x+240+2x+4=1
Use the distributive property to multiply 2 by x+2.
122x+240+4=1
Combine 120x and 2x to get 122x.
122x+244=1
Add 240 and 4 to get 244.
122x=1-244
Subtract 244 from both sides.
122x=-243
Subtract 244 from 1 to get -243.
x=\frac{-243}{122}
Divide both sides by 122.
x=-\frac{243}{122}
Fraction \frac{-243}{122} can be rewritten as -\frac{243}{122} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}