Solve for x
x=180
Graph
Share
Copied to clipboard
\frac{12}{5}\times \frac{25}{100}+x\times \frac{20}{100}=36.6
Reduce the fraction \frac{24}{10} to lowest terms by extracting and canceling out 2.
\frac{12}{5}\times \frac{1}{4}+x\times \frac{20}{100}=36.6
Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
\frac{12\times 1}{5\times 4}+x\times \frac{20}{100}=36.6
Multiply \frac{12}{5} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{20}+x\times \frac{20}{100}=36.6
Do the multiplications in the fraction \frac{12\times 1}{5\times 4}.
\frac{3}{5}+x\times \frac{20}{100}=36.6
Reduce the fraction \frac{12}{20} to lowest terms by extracting and canceling out 4.
\frac{3}{5}+x\times \frac{1}{5}=36.6
Reduce the fraction \frac{20}{100} to lowest terms by extracting and canceling out 20.
x\times \frac{1}{5}=36.6-\frac{3}{5}
Subtract \frac{3}{5} from both sides.
x\times \frac{1}{5}=\frac{183}{5}-\frac{3}{5}
Convert decimal number 36.6 to fraction \frac{366}{10}. Reduce the fraction \frac{366}{10} to lowest terms by extracting and canceling out 2.
x\times \frac{1}{5}=\frac{183-3}{5}
Since \frac{183}{5} and \frac{3}{5} have the same denominator, subtract them by subtracting their numerators.
x\times \frac{1}{5}=\frac{180}{5}
Subtract 3 from 183 to get 180.
x\times \frac{1}{5}=36
Divide 180 by 5 to get 36.
x=36\times 5
Multiply both sides by 5, the reciprocal of \frac{1}{5}.
x=180
Multiply 36 and 5 to get 180.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}