Evaluate
\frac{785}{333}\approx 2.357357357
Factor
\frac{5 \cdot 157}{3 ^ {2} \cdot 37} = 2\frac{119}{333} = 2.3573573573573574
Share
Copied to clipboard
\begin{array}{l}\phantom{999)}\phantom{1}\\999\overline{)2355}\\\end{array}
Use the 1^{st} digit 2 from dividend 2355
\begin{array}{l}\phantom{999)}0\phantom{2}\\999\overline{)2355}\\\end{array}
Since 2 is less than 999, use the next digit 3 from dividend 2355 and add 0 to the quotient
\begin{array}{l}\phantom{999)}0\phantom{3}\\999\overline{)2355}\\\end{array}
Use the 2^{nd} digit 3 from dividend 2355
\begin{array}{l}\phantom{999)}00\phantom{4}\\999\overline{)2355}\\\end{array}
Since 23 is less than 999, use the next digit 5 from dividend 2355 and add 0 to the quotient
\begin{array}{l}\phantom{999)}00\phantom{5}\\999\overline{)2355}\\\end{array}
Use the 3^{rd} digit 5 from dividend 2355
\begin{array}{l}\phantom{999)}000\phantom{6}\\999\overline{)2355}\\\end{array}
Since 235 is less than 999, use the next digit 5 from dividend 2355 and add 0 to the quotient
\begin{array}{l}\phantom{999)}000\phantom{7}\\999\overline{)2355}\\\end{array}
Use the 4^{th} digit 5 from dividend 2355
\begin{array}{l}\phantom{999)}0002\phantom{8}\\999\overline{)2355}\\\phantom{999)}\underline{\phantom{}1998\phantom{}}\\\phantom{999)9}357\\\end{array}
Find closest multiple of 999 to 2355. We see that 2 \times 999 = 1998 is the nearest. Now subtract 1998 from 2355 to get reminder 357. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }357
Since 357 is less than 999, stop the division. The reminder is 357. The topmost line 0002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}